11£®½üÄê¿ÕÆøÖÊÁ¿Öð²½¶ñ»¯£¬Îíö²ÌìÆøÏÖÏó³öÏÖÔö¶à£¬´óÆøÎÛȾΣº¦¼ÓÖØ£®´óÆøÎÛȾ¿ÉÒýÆðÐļ¡¢ºôÎüÀ§ÄѵÈÐķμ²²¡£®ÎªÁ˽âijÊÐÐķμ²²¡ÊÇ·ñÓëÐÔ±ðÓйأ¬ÔÚÄ³Ò½ÔºËæ»úµÄ¶ÔÈëÔº50È˽øÐÐÁËÎʾíµ÷²é£¬µÃµ½ÁËÈç±íµÄÁÐÁª±í£º
»¼Ðķμ²²¡²»»¼Ðķμ²²¡ºÏ¼Æ
ÄÐ5
Ů10
ºÏ¼Æ50
ÒÑÖªÔÚÈ«²¿50ÈËÖÐËæ»ú³éÈ¡1ÈË£¬³éµ½»¼Ðķμ²²¡µÄÈ˵ĸÅÂÊΪ$\frac{3}{5}$£®
£¨1£©Ç뽫ÉÏÃæµÄÁÐÁª±í²¹³äÍêÕû£»
£¨2£©ÊÇ·ñÓÐ99.5%µÄ°ÑÎÕÈÏΪ»¼Ðķμ²²¡ÓëÐÔ±ðÓйأ¿ËµÃ÷ÄãµÄÀíÓÉ£»
£¨3£©ÒÑÖªÔÚ»¼Ðķμ²²¡µÄ10λŮÐÔÖУ¬ÓÐ3λÓÖ»¼ÓÐθ²¡£¬ÏÖÔÚ´Ó»¼Ðķμ²²¡µÄ10λŮÐÔÖУ¬Ñ¡³ö3Ãû½øÐÐÆäËü·½ÃæµÄÅŲ飬¼ÇÑ¡³ö»¼Î¸²¡µÄÅ®ÐÔÈËÊýΪx£¬ÇóxµÄ·Ö²¼ÁС¢ÊýѧÆÚÍû£®
²Î¿¼¹«Ê½£ºK2=$\frac{{n{{£¨{ad-bc}£©}^2}}}{{£¨{a+b}£©£¨{c+d}£©£¨{a+c}£©£¨{b+d}£©}}$£¬ÆäÖÐn=a+b+c+d£®
ÏÂÃæµÄÁÙ½çÖµ±í½ö¹©²Î¿¼£º
P£¨K2¡Ýk£©0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉÖª£ºÔÚÈ«²¿50ÈËÖÐËæ»ú³éÈ¡1ÈË£¬³éµ½»¼Ðķμ²²¡µÄÈ˵ĸÅÂÊΪ$\frac{3}{5}$£¬¼´¿ÉÇóµÃ»¼Ðķμ²²¡µÄΪ30ÈË£¬¼´¿ÉÍê³É2¡Á2ÁÐÁª±í£»
£¨2£©ÔÙ´úÈ빫ʽ¼ÆËãµÃ³öK2£¬Óë7.879±È½Ï¼´¿ÉµÃ³ö½áÂÛ£»
£¨3£©ÔÚ»¼Ðķμ²²¡µÄ10λŮÐÔÖУ¬ÓÐ3λÓÖ»¼ÓÐθ²¡£¬¼ÇÑ¡³ö»¼Î¸²¡µÄÅ®ÐÔÈËÊýΪx£¬Ôò¦Î·þ´Ó³¬¼¸ºÎ·Ö²¼£¬¼´¿ÉµÃµ½xµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®

½â´ð ½â£º£¨1£©¸ù¾ÝÔÚÈ«²¿50ÈËÖÐËæ»ú³éÈ¡1ÈË£¬³éµ½»¼Ðķμ²²¡µÄÈ˵ĸÅÂÊΪ$\frac{3}{5}$£¬¿ÉµÃ»¼Ðķμ²²¡µÄΪ30ÈË£¬¹Ê¿ÉµÃÁÐÁª±í²¹³äÈçÏ£º

»¼Ðķμ²²¡²»»¼Ðķμ²²¡ºÏ¼Æ
ÄÐ20525
Ů101525
ºÏ¼Æ302050
£¨2£©¡ß${K^2}=\frac{{n{{£¨{ad-bc}£©}^2}}}{{£¨{a+b}£©£¨{c+d}£©£¨{a+c}£©£¨{b+d}£©}}$£¬
¼´${K^2}=\frac{{50{{£¨{20¡Á15-5¡Á10}£©}^2}}}{25¡Á25¡Á30¡Á20}=\frac{25}{3}$£¬
¡àK2¡Ö8.333
ÓÖP£¨K2¡Ý7.879£©=0.005=0.5%
¡à£¬ÎÒÃÇÓÐ99.5%µÄ°ÑÎÕÈÏΪÊÇ·ñ»¼Ðķμ²²¡ÊÇÓëÐÔ±ðÓйØÏµµÄ£»
£¨3£©ÏÖÔÚ´Ó»¼Ðķμ²²¡µÄ10λŮÐÔÖУ¬Ñ¡³ö3Ãû½øÐÐθ²¡µÄÅŲ飬¼ÇÑ¡³ö»¼Î¸²¡µÄÅ®ÐÔÈËÊýΪx£¬Ôòx=0£¬1£¬2£¬3£¬
¡àP£¨x=0£©=$\frac{{C}_{7}^{3}}{{C}_{10}^{3}}$=$\frac{7}{24}$£¬
P£¨x=1£©=$\frac{{C}_{7}^{2}•{C}_{3}^{1}}{{C}_{10}^{3}}$=$\frac{21}{40}$£¬
P£¨x=2£©=$\frac{{C}_{7}^{1}•{C}_{3}^{2}}{{C}_{10}^{3}}$=$\frac{7}{40}$£¬
P£¨x=3£©=$\frac{{C}_{3}^{3}}{{C}_{10}^{3}}$=$\frac{1}{120}$£¬
¡àxµÄ·Ö²¼ÁÐΪ
x013
P$\frac{7}{24}$$\frac{21}{40}$$\frac{7}{40}$$\frac{1}{120}$
ÔòE£¨x£©=0¡Á$\frac{7}{24}$+1¡Á$\frac{21}{40}$+2¡Á$\frac{7}{40}$+3¡Á$\frac{1}{120}$=0.9£®

µãÆÀ ±¾Ì⿼²é¶ÀÁ¢ÐÔ¼ìÑéµÄÓ¦ÓÃÎÊÌ⣬¿¼²éËæ»ú±äÁ¿µÃ·Ö²¼ÁкÍÊýѧÆÚÍû£¬¿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßMµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+sin2¦È}\\{y=2sin¦È+2cos¦È}{\;}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÈôÒÔ¸ÃÖ±½Ç×ø±êϵԭµãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬ÇúÏßNµÄ¼«×ø±ê·½³ÌΪ£º¦Ñcos£¨¦È-$\frac{¦Ð}{4}$£©=$\frac{\sqrt{2}}{2}$t£¨ÆäÖÐtΪ²ÎÊý£©£®
£¨1£©ÈôÇúÏßNÓëÇúÏßMÖ»ÓÐÒ»¸ö¹«¹²µã£¬ÇótµÄȡֵ£»
£¨2£©µ±t=-4ʱ£¬ÇóÇúÏßMÉϵĵãÓëÇúÏßNÉϵãµÄ×îС¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Èçͼ£¬ABÊÇÔ²OµÄÖ±¾¶£¬ACÊÇÔ²OµÄÇÐÏߣ¬BC½»Ô²OµãE£®
£¨I£©¹ýµãE×öÔ²OµÄÇÐÏßDE£¬½»ACÓÚµãD£¬Ö¤Ã÷£ºµãDÊÇACµÄÖе㣻
£¨¢ò£©ÈôOA=$\frac{\sqrt{2}}{2}$CE£¬Çó¡ÏACB´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÈçͼËùʾ£¬Á½¸öÔ²ÏàÄÚÇÐÓÚµãT£¬¹«ÇÐÏßΪTN£¬¹ýÄÚÔ²ÉÏÒ»µãM£¬×öÄÚÔ²µÄÇÐÏߣ¬½»ÍâÔ²ÓÚC£¬DÁ½µã£¬TC£¬TD·Ö±ð½»ÄÚÔ²ÓÚA£¬BÁ½µã£®
£¨1£©Ö¤Ã÷£ºAB¡ÎCD£»
£¨2£©Ö¤Ã÷£ºAC•MD=BD•CM£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®Éèf£¨x£©=2x+3£¬g£¨x+2£©=f£¨x-1£©£¬Ôòg£¨x£©=2x-3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÎªÁËÅжϸßÖÐѧÉú¶ÔÎÄÀí¿ÆµÄÆ«ºÃÊÇ·ñÓëÐÔ±ðÓйأ¬Ëæ»úµ÷²éÁË50ÃûѧÉú£¬µÃµ½ÈçÏÂ2¡Á2ÁÐÁª±í£º
  Æ«ºÃÀí Æ«ºÃÎÄ ×ܼÆ
 ÄР20 25 
 Å®  13 
 ×ܼƠ  50
£¨¢ñ£©°ÑÁÐÁª±íÖÐȱʧµÄÊý¾ÝÌîдÍêÕû£»
£¨¢ò£©¸ù¾Ý±íÖÐÊý¾ÝÅжϣ¬ÊÇ·ñÓÐ97.5%µÄ°ÑÎÕÈÏΪ¡°¸ßÖÐѧÉú¶ÔÎÄÀí¿ÆµÄÆ«ºÃÓÚÓëÐÔ±ðÓйء±£¬²¢ËµÃ÷ÀíÓÉ£®
¸½£ºK2=$\frac{n£¨{ad-bc£©}^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£®ÆäÖÐn=a+b+c+d£®
 P£¨K2¡Ýk0£© 0.150 0.100 0.050 0.025 0.010 0.005 0.001
 k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®½«¼«×ø±ê£¨2£¬$\frac{3¦Ð}{2}$£©»¯ÎªÖ±½Ç×ø±êΪ£¨0£¬-2£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßC1£º$\left\{\begin{array}{l}{x=a£¨cos¦Õ+sin¦Õ£©}\\{y=a£¨sin¦Õ-cos¦Õ£©}\end{array}\right.$£¬£¨¦ÕΪ²ÎÊý£¬a£¾0£©£¬ÔÚÒÔÖ±½Ç×ø±êϵµÄÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖᣬȡÏàͬµ¥Î»³¤¶ÈµÄ¼«×ø±êϵÖУ¬ÇúÏßC2£º¦Ñsin£¨¦È+$\frac{¦Ð}{6}$£©=1
£¨1£©ÇóÇúÏßC1µÄÆÕͨ·½³ÌºÍÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÇúÏßC1ÉÏÇ¡ºÃ´æÔÚËĸö²»Í¬µÄµãµ½ÇúÏßC2µÄ¾àÀëÏàµÈ£¬ÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®Èô¹ØÓÚxµÄ²»µÈʽx+$\frac{4}{x}$¡Ýa¶ÔÓÚÒ»ÇÐx¡Ê£¨0£¬+¡Þ£©ºã³ÉÁ¢£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨-¡Þ£¬5]B£®£¨-¡Þ£¬4]C£®£¨-¡Þ£¬2]D£®£¨-¡Þ£¬1]

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸