分析 (1)证明∠TCD=∠TAB,即可证明AB∥CD;
(2)证明:∠MTD=∠ATM,利用正弦定理证明$\frac{MD}{MC}$=$\frac{TD}{TC}$,由AB∥CD知$\frac{TD}{TC}$=$\frac{BD}{AC}$,即可证明AC•MD=BD•CM.
解答
证明:(1)由弦切角定理可知,∠NTB=∠TAB,…(3分)
同理,∠NTB=∠TCD,所以,∠TCD=∠TAB,
所以,AB∥CD.…(5分)
(2)连接TM、AM,
因为CD是切内圆于点M,
所以由弦切角定理知,∠CMA=∠ATM,
又由(Ⅰ)知AB∥CD,
所以,∠CMA=∠MAB,又∠MTD=∠MAB,
所以∠MTD=∠ATM.…(8分)
在△MTD中,由正弦定理知,$\frac{MD}{sin∠DTM}=\frac{TD}{sin∠TMD}$,
在△MTC中,由正弦定理知,$\frac{MC}{sin∠ATM}=\frac{TC}{sin∠TMC}$,因∠TMC=π-∠TMD,
所以$\frac{MD}{MC}$=$\frac{TD}{TC}$,由AB∥CD知$\frac{TD}{TC}$=$\frac{BD}{AC}$,
所以$\frac{MD}{MC}$=$\frac{BD}{AC}$,即AC•MD=BD•CM.…(10分)
点评 本题考查正弦定理,弦切角定理,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 患心肺疾病 | 不患心肺疾病 | 合计 | |
| 男 | 5 | ||
| 女 | 10 | ||
| 合计 | 50 |
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com