精英家教网 > 高中数学 > 题目详情
15.过点(5,3)且与直线2x-3y-7=0平行的直线方程是(  )
A.3x+2y-21=0B.2x-3y-1=0C.3x-2y-9=0D.2x-3y+9=0

分析 求出直线的斜率,利用点斜式求解直线方程即可.

解答 解:过点(5,3)且与直线2x-3y-7=0平行的直线的斜率为:$\frac{2}{3}$,
所求直线方程为:y-3=$\frac{2}{3}$(x-5).
即2x-3y-1=0.
故选:B.

点评 本题考查直线方程的求法,平行线的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{3}}{3}$,以原点O为圆心,b为半径的圆与直线x-y+2=0相切,P为椭圆C上的动点.
(1)求椭圆的方程;
(2)设M为过P且垂直于x轴的直线上的点,若$\frac{|OP|}{|OM|}$=λ($\frac{\sqrt{3}}{3}$≤λ<1),求点M的轨迹方程,并说明轨迹是什么函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.过原点的直线l与双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右两支分别相交于A,B两点,F(-$\sqrt{3}$,0)是双曲线C的左焦点,若|FA|+|FB|=4,$\overrightarrow{FA}$$•\overrightarrow{FB}$=0.则双曲线C的方程=$\frac{{x}^{2}}{2}-{y}^{2}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设集合M={x|(x+3)(x-2)<0,x∈R},N={0,1,2},则M∩N=(  )
A.{0,1,2}B.{0,1}C.{x|0<x<2}D.{x|-3<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,在△ABC中,点D是BC延长线上的点,$\overline{BC}$=3$\overline{CD}$,O在线段CD上且不与端点重合,若$\overrightarrow{AO}$=x$\overrightarrow{AB}$+(1-x)$\overrightarrow{AC}$,则x的取值范围是($-\frac{1}{3}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.利用计算机产生0~3之间的均匀随机数a、x,则事件“logax>0(a>0且a≠≠1)”发生的概率为(  )
A.$\frac{2}{3}$B.$\frac{4}{9}$C.$\frac{1}{9}$D.$\frac{5}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若向量$\overrightarrow{a}$=(3,m),$\overrightarrow{b}$=(2,-1),$\overrightarrow{a}$∥$\overrightarrow{b}$,则实数m的值为(  )
A.-$\frac{3}{2}$B.$\frac{3}{2}$C.2D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.为了分流地铁高峰的压力,某市发改委通过听众会,决定实施低峰优惠票价制度.不超过22公里的地铁票价如下表:
乘坐里程x(单位:km)0<x≤66<x≤1212<x≤22
票价(单位:元)345
现有甲、乙两位乘客,他们乘坐的里程都不超过22公里.已知甲、乙乘车不超过6公里的概率分别为$\frac{1}{4}$,$\frac{1}{3}$,甲、乙乘车超过6公里且不超过12公里的概率分别为$\frac{1}{2}$,$\frac{1}{3}$.
(Ⅰ)求甲、乙两人所付乘车费用不相同的概率;
(Ⅱ)设甲、乙两人所付乘车费用之和为随机变量ξ,求ξ的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=sinxcos(x+$\frac{π}{3}$)+$\frac{{\sqrt{3}}}{4}$,x∈R.
(1)设$α,β∈[0,\frac{π}{2}]$,$f(\frac{α}{2}+\frac{π}{12})=\frac{5}{26},f(\frac{β}{2}-\frac{5π}{12})=-\frac{3}{10}$,求sin(α-β)的值.
(2)△ABC的内角A、B、C所对边的长分别为a、b、c,若a、b、c成等比数列;且a+c=6,$f(\frac{B}{2})=\frac{{\sqrt{3}}}{4}$,求△ABC的面积.

查看答案和解析>>

同步练习册答案