精英家教网 > 高中数学 > 题目详情
2.设数列{an}是等差数列,数列{bn}的前n项和Sn满足Sn=2(bn-1),且a2=b1-1,a5=b3-1.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)设cn=an•bn,求数列{cn}的前n项和Tn

分析 (Ⅰ)通过Sn=2(bn-1)与Sn-1=2(bn-1-1)(n≥2)作差可知bn=2bn-1(n≥2),进而验证b1=2满足上式可得${b_n}={2^n}$(n∈N*).利用$d=\frac{{{a_5}-{a_2}}}{5-2}=2$,结合等差数列的通项公式可得an=2n-3(n∈N*);
(Ⅱ)通过(1)知${c_n}=(2n-3)•{2^n}$,进而利用错位相减法计算即得结论.

解答 解:(Ⅰ)∵Sn=2(bn-1),①
∴当n≥2时,Sn-1=2(bn-1-1),②
由①-②得:bn=2(bn-bn-1)(n≥2),即bn=2bn-1(n≥2),
又n=1时,S1=2(b1-1),得b1=2,
∴${b_n}={2^n}$(n∈N*).
设数列{an}的公差为d,则$d=\frac{{{a_5}-{a_2}}}{5-2}=2$,
所以an=2n-3(n∈N*)…(6分)
(Ⅱ)由(1)知${c_n}=(2n-3)•{2^n}$,设数列{cn}的前n项和为Tn
则${T_n}=-1×2+1×{2^2}+3×{2^3}+…+(2n-3)×{2^n}$,
$2{T_n}=-1×{2^2}+1×{2^3}+3×{2^4}+…+(2n-5)×{2^n}+(2n-3)×{2^{n+1}}$,
两式作差得$-{T_n}=-1×2+2×{2^2}+2×{2^3}+…+2×{2^n}-(2n-3)×{2^{n+1}}$
=$-2-\frac{{8(1-{2^{n+1}})}}{1-2}-(2n-3)×{2^{n+1}}$
=-10-(2n-5)×2n+1
∴${T_n}=(2n-5)•{2^{n+1}}+10$(n∈N*)…(12分)

点评 本题考查数列的通项及前n项和,考查运算求解能力,考查阶差法、错位相减法,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知函数$f(x)=sin({ωx+φ})({ω>0,0<φ<\frac{π}{2}}),f(0)=-f({\frac{π}{2}})$,若将f(x)的图象向左平移$\frac{π}{12}$个单位后所得函数的图象关于原点对称,则φ=(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.三棱柱ABC-A1B1C1的侧棱与底面垂直,AA1=AB=AC=1,AB⊥AC,N是BC的中点,点P在A1B1上,且满足|A1P|=λ|A1B1|,直线PN与平面ABC所成角θ的正切值取最大值时λ的值为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{2\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知y=f(x)是定义在R上的奇函数,且当x>0时,f(x)=2x-1,则f(-2)等于(  )
A.3B.-3C.-$\frac{3}{4}$D.-$\frac{11}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=lnx-$\frac{a}{x}$,g(x)=$\frac{1}{2}{(x-1)^2}$-1.
(Ⅰ)若a>0,试判断f(x)在定义域内的单调性;
(Ⅱ)若f(x)在[1,e]上的最小值为$\frac{3}{2}$,求a的值;
(Ⅲ)当a=0时,若x≥1时,恒有x•f(x)≤λ[g(x)+x]成立,求λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在四边形ABCD中,若$\overrightarrow{DC}=\frac{2}{5}\overrightarrow{AB}$,且|$\overrightarrow{AD}|=|\overrightarrow{BC}|$,则这个四边形是(  )
A.平行四边形B.菱形C.矩形D.等腰梯形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x-y≤2}\\{x+y≤4}\\{x≥1}\end{array}\right.$,则x2+y2取值范围为(  )
A.[1,8]B.[4,8]C.[1,10]D.[1,16]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设F(x)=$\frac{f(x)}{g(x)}$是(-∞,0)∪(0,+∞)上的偶函数,当x<0时,f'(x)g(x)-f(x)g'(x)>0,且f(2)=0,则不等式F(x)<0的解集是(  )
A.(-2,0)∪(2,+∞)B.(-2,0)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-2)∪(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若$\overrightarrow a=(2x,1,3),\overrightarrow b=(1,-2y,9)$,且$\overrightarrow a∥\overrightarrow b$,则xy=-$\frac{1}{4}$.

查看答案和解析>>

同步练习册答案