精英家教网 > 高中数学 > 题目详情
10.已知y=f(x)是定义在R上的奇函数,且当x>0时,f(x)=2x-1,则f(-2)等于(  )
A.3B.-3C.-$\frac{3}{4}$D.-$\frac{11}{4}$

分析 根据题意,由函数的解析式计算可得f(2)的值,又由函数为奇函数,可得f(-2)=-f(2),即可得答案.

解答 解:根据题意,当x>0时,f(x)=2x-1,则f(2)=22-1=3,
又由函数f(x)为R上的奇函数,
则f(-2)=-f(2)=-3;
故选:B.

点评 本题考查函数的奇偶性的性质,关键是灵活运用函数的奇偶性的性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.如图,平行四边形ABCD中,BC=2AB=4,∠ABC=60°,PA⊥AD,E,F分别为BC,PE的中点,AF⊥平面PED.
(1)求证:PA⊥平面ABCD;
(2)求直线BF与平面AFD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知点P为一动点,点A的坐标为(1,$\frac{3}{2}$),点B的坐标为(1,-$\frac{3}{2}$).两条不同的直线PA、PB与x轴交点的横坐标分别为m、n且满足mn=4,记动点P的轨迹及A,B两点组成曲线C,设过点(0,1)且斜率为k的直线l与曲线C交于不同的两点M,N,线段MN的中点为E点,直线OE与曲线C交于Q、R两点.
(1)求曲线C的方程;
(2)若|EM|•|EN|=λ|EQ|•|ER|,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,$|{\overrightarrow{AB}+\overrightarrow{AC}}|=\sqrt{3}|{\overrightarrow{AB}-\overrightarrow{AC}}|$,$|{\overrightarrow{AB}}|=|{\overrightarrow{AC}}|=3$,则$\overrightarrow{CB}•\overrightarrow{CA}$的值为(  )
A.3B.-3C.$-\frac{9}{2}$D.$\frac{9}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设函数f(x)=|x2-2x-1|,若m>n>1,且f(m)=f(n),则mn的取值范围为(  )
A.$({3,3+2\sqrt{2}})$B.$({3,3+2\sqrt{2}}]$C.(1,3)D.(1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在四棱柱ABCD-A1B1C1D1中,底面ABCD是等腰梯形,∠ADC=120°,AB=2CD=2,平面D1DCC1垂直平面ABCD,D1C⊥AB,M是线段AB的中点.
(Ⅰ)求证:D1M∥面B1BCC1
(Ⅱ)若DD1=2,求平面C1D1M和平面ABCD所成的锐角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设数列{an}是等差数列,数列{bn}的前n项和Sn满足Sn=2(bn-1),且a2=b1-1,a5=b3-1.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)设cn=an•bn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数f(x)=ax3+3x2+2,若f′(-1)=6,则a的值等于4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.D为△ABC的边BC的中点,E为AD中点,若AD=a,则($\overrightarrow{EB}$+$\overrightarrow{EC}$)•$\overrightarrow{EA}$=(  )
A.-$\frac{{a}^{2}}{2}$B.$\frac{{a}^{2}}{2}$C.-2a2D.a2

查看答案和解析>>

同步练习册答案