精英家教网 > 高中数学 > 题目详情
1.已知椭圆C的左,右焦点坐标分别是(-2,0),(2,0),离心率为$\frac{\sqrt{2}}{2}$,若P为椭圆C上的任意一点,过点P垂直于y轴的直线交y轴于点Q,M为线段QP的中点.
(1)求椭圆C短轴长;
(2)求点M的轨迹方程.

分析 (1)设椭圆C的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),由椭圆的焦点坐标和离心率列出方程组,由此能求出椭圆的短轴长.
(2)由知椭圆方程为$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1$,设P(x0,y0),M(x,y),利用代入法能求出点M的轨迹方程.

解答 解:(1)∵椭圆C的左,右焦点坐标分别是(-2,0),(2,0),离心率为$\frac{\sqrt{2}}{2}$,
∴设椭圆C的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),
则$\left\{\begin{array}{l}{c=2}\\{e=\frac{c}{a}=\frac{\sqrt{2}}{2}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,解得a=2$\sqrt{2}$,b=2,c=2,
∴椭圆C短轴长2b=4,.
(2)由(1)知椭圆方程为$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1$,
设P(x0,y0),M(x,y),
则$\frac{{{x}_{0}}^{2}}{8}+\frac{{{y}_{0}}^{2}}{4}=1$,$x=\frac{{x}_{0}}{2}$,y=y0
代入,得$\frac{(2x)^{2}}{8}+\frac{{y}^{2}}{4}=1$,
整理,得$\frac{{x}^{2}}{2}+\frac{{y}^{2}}{4}=1$.
∴点M的轨迹方程为$\frac{{x}^{2}}{2}+\frac{{y}^{2}}{4}=1$.

点评 本题考查椭圆的短轴长的求法,考查点的轨迹方程的求法,是中档题,解题时要认真审题,注意椭圆性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知公差为$\frac{56}{15}$的等差数列中,前三项和为34,最后三项和为146,则这个数列共有13项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.利用导数定义求函数y=$\frac{2}{\sqrt{x}}$的导函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知{an}是等差数列,首项a1>0,a19+a20>0,a19a20<0,则使an>-a1成立的最大自然数n是(  )
A.20B.37C.38D.40

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若虚数z满足z3=27,则z3+z2+3z+2的值为(  )
A.-20iB.3iC.20D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知椭圆$C:\frac{x^2}{8}+\frac{y^2}{4}=1$,则其以点P(2,1)为中点的弦的直线方程是x+y-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在等腰梯形ABCD中,AB∥CD,且|AB|=2,|AD|=1,|CD|=2x,其中x∈(0,1),以A、B为焦点且过点D的双曲线的离心率为e1,以C、D为焦点且过点A的椭圆的离心率为e2,若对任意x∈(0,1),不等式t<e1+e2恒成立,则t的最大值为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知中心在原点,焦点在x轴的椭圆过点$E(1,-\frac{{2\sqrt{3}}}{3})$,且焦距为2,过点P(1,1)分别作斜率为k1,k2的椭圆的动弦AB,CD,设M,N分别为线段AB,CD的中点.
(1)求椭圆的标准方程;
(2)当k1+k2=1,直线MN是否恒过定点?如果是,求出定点坐标.如果不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦点分别为F1,F2,离心率为e,过F2的直线与椭圆的交于A,B两点,若△F1AB是以A为顶点的等腰直角三角形,则e2=(  )
A.3-2$\sqrt{2}$B.5-3$\sqrt{2}$C.9-6$\sqrt{2}$D.6-4$\sqrt{2}$

查看答案和解析>>

同步练习册答案