精英家教网 > 高中数学 > 题目详情
17.数列{an}中,已知a1=2,且an+1an=n2+(1-c)n+c,n∈N*
(1)若数列{an}等差,求an
(2)若c=0,求数列{an}的前n项和Sn

分析 (1)由a1=2,且an+1an=n2+(1-c)n+c,n∈N*.取n=1,可得a2,即可得出公差d,再利用等差数列的通项公式即可得出;
(2)c=0,可得an+1an=n2+n,令$\frac{{a}_{n}}{n}$=bn,可得bn+1•bn=1,b1=2,利用数列的周期性可得bn,即可得出an,再利用等差数列的前n项和公式即可得出..

解答 解:(1)设等差数列{an}的公差为d,
∵a1=2,且an+1an=n2+(1-c)n+c,n∈N*
∴a2a1=1+1-c+c,∴2a2=2,解得a2=1,
∴d=1-2=-1.
∴an=2-(n-1)=3-n.
(2)∵c=0,
∴an+1an=n2+(1-c)n+c=n2+n,
∴$\frac{{a}_{n+1}}{n+1}•\frac{{a}_{n}}{n}$=1,
令$\frac{{a}_{n}}{n}$=bn
则bn+1•bn=1,b1=2,
∴${b}_{2}=\frac{1}{2}$,b3=2,b4=$\frac{1}{2}$,
∴数列{bn}是一个周期数列,
b2k-1=2,b2k=2,k∈N*
∴$\frac{{a}_{2k-1}}{2k-1}$=b2k-1=2,∴a2k-1=2(2k-1);
$\frac{{a}_{2k}}{2k}={b}_{2k}=\frac{1}{2}$,∴a2k=k.
综上可得:${a}_{n}=\left\{\begin{array}{l}{2n,n为奇数}\\{\frac{n}{2},n为偶数}\end{array}\right.$.
当n为偶数时,Sn=(a1+a3+…+an-1)+(a2+a4+…+an
=2[1+3+…+(n-1)]+$\frac{1}{2}(2+4+…+n)$
=$\frac{5{n}^{2}+2n}{8}$.
当n为奇数时,Sn=Sn+1-$\frac{n+1}{2}$
=$\frac{(n+1)(5n+3)}{8}$.

点评 本题考查了递推式的应用、等差数列的通项公式及其前n项和公式、数列的周期性,考查了分类讨论思想方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图,四棱锥P-ABCD的底面是正方形,PA⊥底面ABCD,PA=AD=2,点M,N分别为棱PD,PC的中点.
(1)求点P到平面AMN的距离.
(2)求二面角P-AN-M的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图所示,在平行六面体ABCD-A1B1C1D1中,E,F分别在BB1和DD1上,且BE=$\frac{1}{3}$BB1,DF=$\frac{2}{3}$DD1
(1)证明:A、E、C1、F四点共面.
(2)若$\overrightarrow{EF}$=x$\overrightarrow{AB}$+y$\overrightarrow{AD}$+z$\overrightarrow{A{A}_{1}}$,求x+y+z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.化简求值:$\sqrt{si{n}^{2}α(1+cotα)+co{s}^{2}α(1+tanα)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知x,y都是正数,求证$\frac{y}{x}$+$\frac{x}{y}$≥2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.实数等比数列{an}中,a3+a7+a11=28,a2•a7•a12=512,求q.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x2-(b+2)x+c存在b∈R,使得任意x∈[0,c]时,2-2x≤f(x)≤6-2x恒成立,求c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知下列不等式,比较正数m,n的大小.
(1)logπm>logπn;
(2)log0.3m>log0.3n.
(3)logam<logan(0<a<1);
(4)logam>logan(a>1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若P、Q分别为直线3x+4y-5=0与6x+8y+5=0上的动点,则|PQ|的最小值为(  )
A.3B.$\frac{3}{2}$C.$\frac{\sqrt{3}}{2}$D.$\sqrt{3}$

查看答案和解析>>

同步练习册答案