精英家教网 > 高中数学 > 题目详情
16.已知椭圆C的焦点坐标是F1(-1,0)、F2(1,0),过点F2垂直于长轴的直线l交椭圆C于B、D两点,且|BD|=3.
(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存在过点P(2,1)的直线l1与椭圆C相交于不同的两点M、N,且满足$\overrightarrow{PM}$•$\overrightarrow{PN}$=$\frac{5}{4}$?若存在,求出直线l1的方程;若不存在,请说明理由.

分析 (Ⅰ)设椭圆的方程是$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),由椭圆C的焦点坐标和过点F2垂直于长轴的直线l交椭圆C于B、D两点,且|BD|=3,求出a,b,由此能求出椭圆C的方程.
(Ⅱ)设满足条件的直线方程为y=k(x-2)+1,与椭圆联立,得(3+4k2)x2-8k(2k-1)x+16k2-16k-8=0,由此利用根的判别式、韦达定理、向量的数量积,结合已知条件,能求出直线l1的方程.

解答 解:(Ⅰ)设椭圆的方程是$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),
∵椭圆C的焦点坐标是F1(-1,0)、F2(1,0),∴c=1,
∵过点F2垂直于长轴的直线l交椭圆C于B、D两点,且|BD|=3,
∴$\frac{2{b}^{2}}{a}=3$,
又a2-b2=1,∴a=2,b=$\sqrt{3}$,
∴椭圆C的方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{4}$=1.
(Ⅱ)假设存在直线l1且由题意得斜率存在,设满足条件的直线方程为y=k(x-2)+1,
由$\left\{\begin{array}{l}{y=k(x-2)+1}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,得(3+4k2)x2-8k(2k-1)x+16k2-16k-8=0,
∵直线l1与椭圆C相交于不同的两点M,N,
设M(x1,y1),N(x2,y2),
∴△=[-8k(2k-1)]2-4(3+4k2)(16k2-16k-8)>0,解得k>-$\frac{1}{2}$,
又${x}_{1}+{x}_{2}=\frac{8k(2k-1)}{3+4{k}^{2}}$,${x}_{1}{x}_{2}=\frac{16{k}^{2}-16k-8}{3+4{k}^{2}}$,
∵$\overrightarrow{PM}•\overrightarrow{PN}$=(x1-2)(x2-2)+(y1-1)(y2-1)=$\frac{5}{4}$,
∴$({x}_{1}-2)({x}_{2}-2)(1+{k}^{2})=\frac{5}{4}$,
即$[{x}_{1}{x}_{2}-2({x}_{1}+{x}_{2})+4](1+{k}^{2})=\frac{5}{4}$,
∴[$\frac{16{k}^{2}-16k-8}{3+4{k}^{2}}$-2•$\frac{8k(2k-1)}{3+4{k}^{2}}$+4](1+k2)=$\frac{4+4{k}^{2}}{3+4{k}^{2}}$,
解得k=$±\frac{1}{2}$,∵k$>-\frac{1}{2}$,∴k=$\frac{1}{2}$,
∴存在直线l1满足条件,其方程为y=$\frac{1}{2}x$.

点评 本题考查椭圆方程的求法,考查满足条件的直线方程是否存在的判断与求法,是中档题,解题时要认真审题,注意根的判别式、韦达定理、向量的数量积、椭圆性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.在△ABC中,sinB=sinAcosC,且△ABC的最大边长为12,最小角的正弦等于$\frac{1}{3}$.
(1)判断△ABC的形状;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,四棱锥P-ABCD中,PD⊥底面ABCD,AB∥CD,∠BAD=$\frac{π}{3}$,AB=2,CD=3,M为PC上一点,PM=2MC.
(Ⅰ)证明:BM∥平面PAD;
(Ⅱ)若AD=2,PD=3,求二面角D-MB-C的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知tan(α-$\frac{π}{4}$)=$\frac{1}{2}$,则$\frac{sinα+cosα}{sinα-cosα}$的值为(  )
A.$\frac{1}{2}$B.2C.2$\sqrt{2}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知点M(6,-8),点P(x,y)满足不等式(x-3)2+(y+2)2≤25,则$\overrightarrow{OM}•\overrightarrow{OP}$的取值范围为(  )
A.[-16,84]B.[-50,50]C.[-16,16]D.[-16,50]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.通过观察,下列数列哪些收敛?哪些发散?并求收敛数列的极限;
(1){$\frac{(-1)^{n}}{n+1}$};
(2){(-1)n$\frac{n}{n+1}$};
(3){($\frac{3}{4}$)n+1};
(4){2n};
(5){($\frac{a}{a+1}$)n}(a>0为常数).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设函数$f(x)=\left\{{\begin{array}{l}{{2^x},x∈[-1,2]}\\{8-2x,x∈(2,4]}\end{array}}\right.$,则f(log23)=3,若f(f(t))∈[0,1],则实数t的取值范围是[log2$\frac{7}{2}$,$\frac{9}{4}$]或1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)在点x=a处可导,试用a、f(a)和f′(a)表示$\underset{lim}{x→a}$$\frac{af(x)-xf(a)}{x-a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的短轴长为2,离心率为$\frac{{\sqrt{2}}}{2}$,直线l:y=kx+m与椭圆C交于A,B两点,且线段AB的垂直平分线通过点$(0\;,\;-\frac{1}{2})$.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)求△AOB(O为坐标原点)面积的最大值.

查看答案和解析>>

同步练习册答案