精英家教网 > 高中数学 > 题目详情
8.动点P在椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1,定点A(0,5),求AP的最大值.

分析 设P(5cosθ,4sinθ),利用两点之间的距离公式、三角函数的单调性与值域、二次函数的单调性即可得出.

解答 解:设P(5cosθ,4sinθ),
则|AP|=$\sqrt{(5cosθ)^{2}+(4sinθ-5)^{2}}$
=$\sqrt{25co{s}^{2}θ+16si{n}^{2}θ-40sinθ+25}$=$\sqrt{-9si{n}^{2}θ-40sinθ+50}$
=$\sqrt{-9(sinθ+\frac{20}{9})^{2}+\frac{850}{9}}$≤9,当且仅当sinθ=-1时取等号.
∴AP的最大值为9.

点评 本题考查了椭圆的标准方程及其性质、两点之间的距离公式、三角函数的单调性与值域、二次函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知动点M(x,y,z)到xOy平面的距离与点M到点(1,-1,2)的距离相等,求点M轨迹的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知M=$(\begin{array}{l}{2}&{0}\\{0}&{2}\end{array})$,a=$(\begin{array}{l}{3}\\{1}\end{array})$试计算M10a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知圆M:(x-1)2+y2=1,设A(0,t),B(0,t+6),(-5≤t≤-2),若圆M是△ABC的内切圆,则△ABC面积的最大值为(  )
A.$\frac{15}{2}$B.$\frac{29}{4}$C.7D.$\frac{27}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,正方体ABCD-A1B1C1D1的棱长为2,线段B1D1上有两个动点E,F,且EF=$\sqrt{2}$,则下列结论中错误的是(  )
A.AC⊥BEB.EF∥平面ABCD
C.异面直线AE,BF所成的角为定值D.三棱锥B-AEF的体积为定值

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知空间四个向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$,$\overrightarrow{d}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=|$\overrightarrow{c}$|=|$\overrightarrow{d}$|=1,$\overrightarrow{a}$与$\overrightarrow{b}$夹角为60°,$\overrightarrow{c}$与$\overrightarrow{d}$夹角为90°,则|$\overrightarrow{a}$+t$\overrightarrow{b}$|2+|$\overrightarrow{c}$+t$\overrightarrow{d}$|2(t∈R)最小值是$\frac{15}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在三棱锥S-ABC中,△ABC为正三角形,且A在面SBC上的射影H是△SBC的垂心,又二面角H-AB-C为30°,则$\frac{SA}{AB}$=$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=lnx-mx.
(Ⅰ)若f(x)的最大值为-1,求实数m的值;
(Ⅱ)若f(x)的两个零点为x1,x2,且ex1≤x2,求y=(x1-x2)f′(x1+x2)的最小值.(其中e为自然对数的底数,f′(x)是f(x)的导函数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求点P(3,-1,2)到直线$\left\{\begin{array}{l}{x+y-z+1=0}\\{2x-y+z-4=0}\end{array}\right.$的距离.

查看答案和解析>>

同步练习册答案