精英家教网 > 高中数学 > 题目详情
1.函数f(x)=xlnx+a在点(1,f(1))处的切线方程为y=kx+b,则a-b=1.

分析 求出f(x)的导数,可得切线的斜率,结合切点在切线上,也在曲线y=f(x)上,即可得到所求值.

解答 解:函数f(x)=xlnx+a的导数为f′(x)=1+lnx,
可得在点(1,f(1))处的切线斜率为k=1,
切点为(1,a),
由切线方程y=kx+b,可得a=k+b,
即有a-b=1.
故答案为:1.

点评 本题考查导数的运用:求切线的斜率,考查导数的几何意义,以及直线方程的运用,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知△ABC的外接圆半径为1,角A,B,C的对边分别为a,b,c,且2acos A=ccos B+bcos C.
(Ⅰ)求A;
(Ⅱ)若b2+c2=7,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数y=$\sqrt{3}$sin2x-cos2x的图象可由函数$y=2sin(2x+\frac{π}{6})$的图象至少向右平移$\frac{π}{6}$个单位长度得到.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知抛物线C:y2=2px(p>0)的焦点为F,过点F的直线l与抛物线C及其准线分别交于P,Q两点,$\overrightarrow{QF}=3\overrightarrow{FP}$,则直线l的斜率为$±\sqrt{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若双曲线M:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左、右焦点分别是F1,F2,P为双曲线M上一点,且|PF1|=15,|PF2|=7,|F1F2|=10,则双曲线M的离心率为(  )
A.$\frac{5}{4}$B.$\frac{5}{3}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数$f(x)=lnx-{x^2}+f'(\frac{1}{2})•\frac{x+2}{2}$.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)证明:$(\frac{1}{2}{x^2}+x+1)f(x)<2{e^x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=x3-(a-1)x2+(a-3)x的导函数f'(x)是偶函数,则实数a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知(1+i)x=1+yi,其中x,y是实数,i是虚数单位,则|x+yi|=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=ax3+cx+d(a≠0)是R上的奇函数,当x=1时f(x)取得极值-2
(I)求函数f(x)的解析式并讨论单调性
(II)证明对任意x1,x2∈(-1,1),不等式|f(x1)-f(x2)|<4恒成立.

查看答案和解析>>

同步练习册答案