精英家教网 > 高中数学 > 题目详情
13.函数f(x)=x3-(a-1)x2+(a-3)x的导函数f'(x)是偶函数,则实数a=1.

分析 先求出函数的导数,再利用偶函数的性质f(-x)=f(x)建立等式关系,解之即可.

解答 解:对f(x)=x3-(a-1)x2+(a-3)x求导,得
f'(x)=3x2-2(a-1)x+(a-3),
又f′(x)是偶函数,即f′(x)=f′(-x),
代入,可得:
3x2-2(a-1)x+(a-3)=3x2+2(a-1)x+(a-3),
化简得a=1,
故答案为:1.

点评 考查了偶函数的概念,以及将偶函数与函数的求导结合在一起,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-2ax+{a}^{2}+1,x≤0}\\{{x}^{2}+\frac{2}{x}-a,x>0}\end{array}\right.$
(Ⅰ)若对于任意的x∈R,都有f(x)≥f(0)成立,求实数a的取值范围;
(Ⅱ)记函数f(x)的最小值为M(a),解关于实数a的不等式M(a-2)<M(a).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=m-|x-3|,不等式f(x)>2的解集为(2,4).求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=xlnx+a在点(1,f(1))处的切线方程为y=kx+b,则a-b=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知复数z,满足z(2-i)=2+4i,则复数z等于(  )
A.2iB.-2iC.2+iD.-2+i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知点P(x,y)满足条件$\sqrt{{{(x+1)}^2}+{y^2}}+\sqrt{{{(x-1)}^2}+{y^2}}=4$.
(Ⅰ)求点P的轨迹C的方程;
(Ⅱ)直线l与圆O:x2+y2=1相切,与曲线C相较于A,B两点,若$\overrightarrow{OA}•\overrightarrow{OB}=-\frac{4}{3}$,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知向量$\overrightarrow a=(sinθ,1)$,$\overrightarrow b=(-sinθ,0)$,$\overrightarrow c=(cosθ,-1)$,且$(2\overrightarrow a-\overrightarrow b)∥\overrightarrow c$,则sin2θ等于$-\frac{12}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合A={x|3≤x<7},B={x|2<x<10},则∁R(A∪B)=(  )
A.{x|3≤x<7},B.{x|2<x<10}C.{x|x≤2或x≥10}D.{x|x<3或x≥7}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某理财公司有两种理财产品A和B.这两种理财产品一年后盈亏的情况如下(每种理财产品的不同投资结果之间相互独立):
产品A产品B(其中p、q>0)
投资结果获利40%不赔不赚亏损20%
概  率$\frac{1}{3}$$\frac{1}{2}$$\frac{1}{6}$
投资结果获利20%不赔不赚亏损10%
概  率p$\frac{1}{3}$
(Ⅰ)已知甲、乙两人分别选择了产品A和产品B进行投资,如果一年后他们中至少有一人获利的概率大于$\frac{3}{5}$,求p的取值范围;
(Ⅱ)丙要将家中闲置的10万元钱进行投资,以一年后投资收益的期望值为决策依据,在产品A和产品B之中选其一,应选用哪个?

查看答案和解析>>

同步练习册答案