精英家教网 > 高中数学 > 题目详情
16.若双曲线M:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左、右焦点分别是F1,F2,P为双曲线M上一点,且|PF1|=15,|PF2|=7,|F1F2|=10,则双曲线M的离心率为(  )
A.$\frac{5}{4}$B.$\frac{5}{3}$C.2D.3

分析 利用双曲线的定义以及双曲线的简单性质求解双曲线的离心率即可.

解答 解:双曲线M:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左、右焦点分别是F1,F2
P为双曲线M上一点,且|PF1|=15,|PF2|=7,|F1F2|=10,可得a=4,c=5,
则双曲线的离心率为:e=$\frac{c}{a}$=$\frac{5}{4}$.
故选:A.

点评 本题考查双曲线的简单性质以及双曲线的定义的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知集合A={x∈N|1<x<log2k},若集合A中至少有4个元素,则(  )
A.k>32B.k≥32C.k>16D.k≥16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知${(2x+1)^4}={a_0}+{a_1}({x+1})+{a_2}{({x+1})^2}+{a_3}{({x+1})^3}+{a_4}{({x+1})^4}$,则a1+a2+a3+a4的值是0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=m-|x-3|,不等式f(x)>2的解集为(2,4).求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.18、如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60°,PA=PC=1,$PB=PD=\sqrt{2}$,E为线段PD上一点,且PE=2ED.
(Ⅰ)若F为PE的中点,证明:BF∥平面ACE;
(Ⅱ)求二面角P-AC-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=xlnx+a在点(1,f(1))处的切线方程为y=kx+b,则a-b=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知复数z,满足z(2-i)=2+4i,则复数z等于(  )
A.2iB.-2iC.2+iD.-2+i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知向量$\overrightarrow a=(sinθ,1)$,$\overrightarrow b=(-sinθ,0)$,$\overrightarrow c=(cosθ,-1)$,且$(2\overrightarrow a-\overrightarrow b)∥\overrightarrow c$,则sin2θ等于$-\frac{12}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某学校在自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[160,165),第2组[165,170),第3组[170,175),第4组[175,180),第5组[180,185],得到的频率分布直方图如图所示:
(1)求第3,4,5组的频率;
(2)为了能选拨最优秀的学生,该校决定在笔试成绩高的第组用分层抽样法抽取6名学生进入第二轮面试,则第3,4,5组每组个抽取多少名学生进入第二轮面试?
(3)第(2)问的前提下,学校决定在这6名学生中随机抽取2名学生接受考官甲的面试,求:第4组至少有一名学生被考官甲面试的概率.

查看答案和解析>>

同步练习册答案