精英家教网 > 高中数学 > 题目详情
15.如图,在直角梯形ABCD中,AD∥BC,∠BAD=$\frac{π}{2}$,AB=BC=1,AD=2,E是AD的中点,O是AC与BE的交点,将ABE沿BE折起到A1BE的位置,如图2.
(Ⅰ)证明:CD⊥平面A1OC;
(Ⅱ)若平面A1BE⊥平面BCDE,求平面A1BC与平面A1CD夹角的余弦值.

分析 (Ⅰ)根据线面垂直的判定定理即可证明:CD⊥平面A1OC;
(Ⅱ)若平面A1BE⊥平面BCDE,建立空间坐标系,利用向量法即可求平面A1BC与平面A1CD夹角的余弦值.

解答 证明:(Ⅰ)在图1中,∵AB=BC=1,AD=2,E是AD的中点,∠BAD=$\frac{π}{2}$,
∴BE⊥AC,
即在图2中,BE⊥OA1,BE⊥OC,
则BE⊥平面A1OC;
∵CD∥BE,
∴CD⊥平面A1OC;
(Ⅱ)若平面A1BE⊥平面BCDE,
由(Ⅰ)知BE⊥OA1,BE⊥OC,
∴∠A1OC为二面角A1-BE-C的平面角,
∴∠A1OC=$\frac{π}{2}$,
如图,建立空间坐标系,
∵A1B=A1E=BC=ED=1.BC∥ED
∴B($\frac{\sqrt{2}}{2}$,0,0),E(-$\frac{\sqrt{2}}{2}$,0,0),A1(0,0,$\frac{\sqrt{2}}{2}$),C(0,$\frac{\sqrt{2}}{2}$,0),
$\overrightarrow{BC}$=(-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$,0),$\overrightarrow{{A}_{1}C}$=(0,$\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$),
$\overrightarrow{CD}=\overrightarrow{BE}=(-\sqrt{2},0,0)$
设平面A1BC的法向量为$\overrightarrow{m}$=(x,y,z),平面A1CD的法向量为$\overrightarrow{n}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{BC}=0}\\{\overrightarrow{m}•\overrightarrow{{A}_{1}C}=0}\end{array}\right.$得$\left\{\begin{array}{l}{-x+y=0}\\{y-z=0}\end{array}\right.$,令x=1,则y=1,z=1,即$\overrightarrow{m}$=(1,1,1),
由$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{{A}_{1}C}=0}\\{\overrightarrow{n}•\overrightarrow{CD}=0}\end{array}\right.$得$\left\{\begin{array}{l}{a=0}\\{b-c=0}\end{array}\right.$,
取$\overrightarrow{n}$=(0,1,1),
则cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{2}{\sqrt{3}×\sqrt{2}}$=$\frac{\sqrt{6}}{3}$,
∴平面A1BC与平面A1CD夹角的余弦值为$\frac{\sqrt{6}}{3}$.

点评 本题主要考查空间直线和平面垂直的判定以及二面角的求解,建立坐标系利用向量法是解决空间角的常用方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知等差数列{an}满足a1+a2=10,a4-a3=2
(1)求{an}的通项公式;
(2)设等比数列{bn}满足b2=a3,b3=a7,问:b6与数列{an}的第几项相等?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有(  )
A.14斛B.22斛C.36斛D.66斛

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.数列{an}满足:a1+2a2+…nan=4-$\frac{n+2}{{2}^{n-1}}$,n∈N+
(1)求a3的值;
(2)求数列{an}的前 n项和Tn
(3)令b1=a1,bn=$\frac{{T}_{n-1}}{n}$+(1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$)an(n≥2),证明:数列{bn}的前n项和Sn满足Sn<2+2lnn.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.根据如图框图,当输入x为2006时,输出的y=(  )
A.2B.4C.10D.28

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知M(x0,y0)是双曲线C:$\frac{{x}^{2}}{2}-{y}^{2}$=1上的一点,F1,F2是C的左、右两个焦点,若$\overrightarrow{M{F}_{1}}•\overrightarrow{M{F}_{2}}$<0,则y0的取值范围是(  )
A.$(-\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3})$B.$(-\frac{\sqrt{3}}{6},\frac{\sqrt{3}}{6})$C.$(-\frac{2\sqrt{2}}{3},\frac{2\sqrt{2}}{3})$D.$(-\frac{2\sqrt{3}}{3},\frac{2\sqrt{3}}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为(  )
A.134石B.169石C.338石D.1365石

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,AB和BC分别与圆O相切于点D、C,AC经过圆心O,且BC=2OC.
求证:AC=2AD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,三棱锥A-BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是$\frac{7}{8}$.

查看答案和解析>>

同步练习册答案