精英家教网 > 高中数学 > 题目详情
6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有(  )
A.14斛B.22斛C.36斛D.66斛

分析 根据圆锥的体积公式计算出对应的体积即可.

解答 解:设圆锥的底面半径为r,则$\frac{π}{2}$r=8,
解得r=$\frac{16}{π}$,
故米堆的体积为$\frac{1}{4}$×$\frac{1}{3}$×π×($\frac{16}{π}$)2×5≈$\frac{320}{9}$,
∵1斛米的体积约为1.62立方,
∴$\frac{320}{9}$÷1.62≈22,
故选:B.

点评 本题主要考查椎体的体积的计算,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.某食品的保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=ekx+b(e=2.718…为自然对数的底数,k、b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是24小时.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知等比数列{an}满足a1=3,a1+a3+a5=21,则a3+a5+a7=(  )
A.21B.42C.63D.84

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知数列{an}中,a1=1,an=an-1+$\frac{1}{2}$(n≥2),则数列{an}的前9项和等于27.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知a>0,函数f(x)=eaxsinx(x∈[0,+∞]).记xn为f(x)的从小到大的第n(n∈N*)个极值点.证明:
(Ⅰ)数列{f(xn)}是等比数列;
(Ⅱ)若a≥$\frac{1}{\sqrt{{e}^{2}-1}}$,则对一切n∈N*,xn<|f(xn)|恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知F是双曲线C:x2-$\frac{{y}^{2}}{8}$=1的右焦点,P是C的左支上一点,A(0,6$\sqrt{6}$).当△APF周长最小时,该三角形的面积为12$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知直线l的极坐标方程为2ρsin(θ-$\frac{π}{4}$)=$\sqrt{2}$,点A的极坐标为A(2$\sqrt{2}$,$\frac{7π}{4}$),则点A到直线l的距离为$\frac{5\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在直角梯形ABCD中,AD∥BC,∠BAD=$\frac{π}{2}$,AB=BC=1,AD=2,E是AD的中点,O是AC与BE的交点,将ABE沿BE折起到A1BE的位置,如图2.
(Ⅰ)证明:CD⊥平面A1OC;
(Ⅱ)若平面A1BE⊥平面BCDE,求平面A1BC与平面A1CD夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表

B地区用户满意度评分的频数分布表
满意度评分分组[50,60)[60,70)[70,80)[80,90)[90,100)
频数2814106
(1)做出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可)
(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个不等级:
满意度评分低于70分70分到89分不低于90分
满意度等级不满意满意非常满意
估计哪个地区用户的满意度等级为不满意的概率大?说明理由.

查看答案和解析>>

同步练习册答案