精英家教网 > 高中数学 > 题目详情
2.已知i是虚数单位,则i3+$\frac{1}{i}$=(  )
A.-2iB.2iC.-iD.i

分析 利用复数的运算法则即可得出.

解答 解:i3+$\frac{1}{i}$=-i+$\frac{-i}{-i•i}$=-2i=-2i.
故选:A.

点评 本题考查了复数的运算法则,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.某校对数学、物理两科进行学业水平考前辅导,辅导后进行测试,按成绩(满分100分)划分为合格(成绩大于或等于70分)和不合格(成绩小于70分).现随机抽取两科各100名学生的成绩统计如下:
成绩(单位:分)[50,60)[60,70)[70,80)[80,90)[90,100]
数学81240328
物理71840296
(1)试分别估计该校学生数学、物理合格的概率;
(2)数学合格一人可以赢得4小时机器人操作时间,不合格一人则减少1小时机器人操作
时间;物理合格一人可赢得5小时机器人操作时间,不合格一人则减少2小时机器人操作时间.在(1)的前提下,
(i)记X为数学一人和物理一人所赢得的机器人操作时间(单位:小时)总和,求随机变量X 的分布列和数学期望;
(ii)随机抽取5名学生,求这5名学生物理考前辅导后进行测试所赢得的机器人操作时间不少于14小时的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.抛物线y2=2x的焦点为F,M(x0,y0)在此抛物线上,且|MF|=$\frac{5}{2}$,则x0=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,∠BAD=∠CDA=90°,PA⊥平面ABCD,PA=AD=AB=2,CD=1,M,N分别是PD,PB的中点.
(Ⅰ)证明:直线NC∥平面PAD;
(Ⅱ)求平面MNC与底面ABCD所成的锐二面角的余弦值;
(Ⅲ)求三棱锥P-MNC的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知实数x,y满足条件$\left\{\begin{array}{l}2x+y≥4\\ x-y≥1\\ x-2y≤2\end{array}\right.$,则z=x+2y的最小值为(  )
A.$\frac{4}{3}$B.4C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.数列{an}满足a1=1,且8an•an+1-16an+1+2an+5=0(n≥1),求an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在空间四边形ABCD中,AB=CD=8,M,N分别是BC,AD的中点,若异面直线AB与CD所成的角为60°时,求MN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}满足an+1=an-$\frac{1}{n(n+1)}$,a1=3,数列{bn}的前n项和Sn=-$\frac{1}{2}$n2-$\frac{401}{2}$n+1
(1)求数列{an},{bn}的通项公式;
(2)设cn=$\frac{1}{{a}_{n}•{b}_{n}}$,求数列{cn}的最小项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.计算定积分${∫}_{0}^{π}$(sinx+cosx)dx2.

查看答案和解析>>

同步练习册答案