分析 由${a}_{n+1}=-\frac{2{a}_{n}+5}{8{a}_{n}-16}$,求这个式子的不动点x,得到{$\frac{{a}_{n}-\frac{1}{2}}{{a}_{n}-\frac{5}{4}}$}是以-2为首项,$\frac{1}{2}$为公比的等比数列,从而求出an的通项公式.
解答 解:∵8an•an+1-16an+1+2an+5=0(n≥1),
∴${a}_{n+1}=-\frac{2{a}_{n}+5}{8{a}_{n}-16}$,求这个式子的不动点x,有x=-$\frac{2x+5}{8x-16}$,
解得x1=$\frac{1}{2}$,x2=$\frac{5}{4}$,
∴$\frac{{a}_{n+1}-\frac{1}{2}}{{a}_{n+1}-\frac{5}{4}}$=$\frac{-\frac{2{a}_{n}+5}{8{a}_{n}-16}-\frac{1}{2}}{-\frac{2{a}_{n}+5}{8{a}_{n}-16}+\frac{5}{4}}$=$\frac{1}{2}$×$\frac{{a}_{n}-\frac{1}{2}}{{a}_{n}-\frac{5}{4}}$,
∵a1=1,∴{$\frac{{a}_{n}-\frac{1}{2}}{{a}_{n}-\frac{5}{4}}$}是以-2为首项,$\frac{1}{2}$为公比的等比数列,
∴$\frac{{a}_{n}-\frac{1}{2}}{{a}_{n}-\frac{5}{4}}$=-2×$(\frac{1}{2})^{n-1}$,
∴${a}_{n}=\frac{3}{{2}^{n}+4}+\frac{1}{2}$
点评 本题主要考查数列的递推式,属于中档题,在数列大题中常见.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 240 | B. | 180 | C. | 150 | D. | 540 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 30° | B. | 60° | C. | 120° | D. | 150° |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com