精英家教网 > 高中数学 > 题目详情
5.用数学归纳法证明:1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{n}-1}$≤n(n≥1,n∈N*).

分析 直接利用数学归纳法证明问题的步骤,证明不等式即可.

解答 证明:(1)当n=1时,左边=1,右边=1,命题成立.
(2)假设当n=k时,1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{k}-1}$≤k成立
当n=k+1时,左边=1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{k}-1}$+$\frac{1}{{2}^{k}}$+…+$\frac{1}{{2}^{k+1}-1}$
≤k+$\frac{1}{{2}^{k}}$+…+$\frac{1}{{2}^{k+1}-1}$≤k+$\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k}}$+…+$\frac{1}{{2}^{k}}$=k+1,
当n=k+1时命题成立.
由(1)(2)可得,对于任意n≥1,n∈N*都成立.

点评 本题考查数学归纳法证明含自然数n的表达式的证明方法,注意n=k+1的证明时,必须用上假设.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.若直线2ax+by-2=0(ab>0)平分圆x2+y2-2x-4y-6=0,则$\frac{2}{a}$+$\frac{1}{b}$的最小值是(  )
A.1B.5C.4$\sqrt{2}$D.3+2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某中学举行英语演讲比赛,如图是七位评委为某位学生打出分数的茎叶图,去掉一个最高分和一个最低分,所剩数据的中位数和方差分别为(  )
A.84,4.84B.84,1.6C.85,4D.86,1.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.与命题“若a∉M,则b∈M”等价的命题是(  )
A.若a∈M,则b∉MB.若b∈M,则a∉MC.若b∉M,则a∉MD.若b∉M,则a∈M

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.过原点作曲线y=ex(其中e为自然对数的底数)的切线l,若点M($\frac{2-ab}{e}$,a+2b))(a≥0,b≥0)在切线l上,则a+b的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在直角坐标系xOy中,直线l的参数方程是$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t+m}\\{y=\frac{1}{2}t}\end{array}\right.$(t为参数),以坐标原点O为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程是ρ=2cosθ.
(1)求直线l的普通方程和曲线C的直角坐标方程;
(2)设点P(m,0),若直线l与曲线C交于A、B两点,且|PA|•|PB|=1,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=$\left\{\begin{array}{l}{{e}^{ax}+3,x>0}\\{\frac{2}{3}{x}^{3}+{x}^{2}+4,x≤0}\end{array}\right.$在[-3,3]上的最大值为$\frac{13}{3}$,则实数a的取值范围是(  )
A.[0,$\frac{1}{3}$ln$\frac{4}{3}$]B.[$\frac{1}{3}$ln$\frac{4}{3}$,+∞)C.(-∞,0]D.(-∞,$\frac{1}{3}$ln$\frac{4}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若幂函数f(x)的图象经过点(3,$\frac{1}{9}$),则log2f(2)=(  )
A.-4B.4C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则φ=(  )
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{π}{12}$

查看答案和解析>>

同步练习册答案