| A. | $\frac{π}{3}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{6}$ | D. | $\frac{π}{12}$ |
分析 由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值.
解答 解:根据f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象,
可得A=2,$\frac{1}{4}•\frac{2π}{ω}$=$\frac{π}{2}$-$\frac{π}{6}$,∴ω=$\frac{3}{2}$.
再根据五点法作图可得$\frac{3}{2}$•$\frac{π}{6}$+φ=$\frac{π}{2}$,∴φ=$\frac{π}{4}$,
故选:B.
点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-5]∪[3,+∞) | B. | [-5,3] | C. | (-∞,-3]∪[5,+∞) | D. | [-3,5] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 把C1上各点的横坐标缩短到原来的$\frac{1}{2}$倍,纵坐标不变,再把得到的曲线向左平移$\frac{2π}{3}$个单位长度,得到曲线C2 | |
| B. | 把C1上各点的横坐标缩短到原来的$\frac{1}{2}$倍,纵坐标不变,再把得到的曲线向左平移$\frac{π}{3}$个单位长度,得到曲线C2 | |
| C. | 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移$\frac{2π}{3}$个单位长度,得到曲线C2 | |
| D. | 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个$\frac{π}{3}$单位长度,得到曲线C2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | 3 | C. | 7 | D. | 9 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com