精英家教网 > 高中数学 > 题目详情
20.给出以下数对序列:
(2,2)
(2,4)(4,2)
(2,6)(4,4)(6,2)
(2,8)(4,6)(6,4)(8,2)

记第i行的第j个数对为aij,如a43=(6,4),则aij=(2j,2i-2j+2).

分析 由已知的各数对可看出,每个数对的第一个坐标为列数的2倍,而第二个坐标为数对所在列的行数的2倍,这样便可得出aij=(2j,2i-2j+2).

解答 解:根据给出的数对序列可得:第i行第j个数对aij=(2j,2i-2j+2);
故答案为:(2j,2i-2j+2).

点评 考查找规律的方法解决问题,归纳思想的应用,以及由特殊到一般的方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.若幂函数f(x)的图象经过点(3,$\frac{1}{9}$),则log2f(2)=(  )
A.-4B.4C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则φ=(  )
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知实数m>1,实数x,y满足不等式组$\left\{\begin{array}{l}{y≥x}\\{y≤2x}\\{x+y≤1}\end{array}\right.$,若目标函数z=x+my的最大值等于3,则m的值是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如果把一个多边形的所有边中的任意一条边向两方无限延长成为一直线时,其他各边都在此直线的同旁,那么这个多边形就叫做凸多边形,平面内凸四边形有2条对角线,凸五边形有5条对角线,以此类推,凸16边形的对角线条数为(  )
A.65B.96C.104D.112

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图所示,在四棱锥S-ABCD中,底面ABCD是正方形,侧棱SD⊥平面ABCD,SD=DC,点E是SC的中点,作EF⊥SB交SB于点F.
(1)求证:SA∥平面EDB;
(2)求证:SB⊥平面EFD;
(3)求二面角C-SB-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.要得到函数y=sin2x的图象,只需将函数y=cos2x的图象(  )
A.向右平移$\frac{π}{4}$个单位B.向左平移$\frac{π}{4}$个单位
C.向右平移$\frac{π}{2}$个单位D.向左平移$\frac{π}{2}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.阅读如图所示的程序框图,若输出的数据为21,则判断框中应填入的条件为(  )
A.k≤3B.k≤4C.k≤5D.k≤6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.每年的3月5日是“青年志愿者服务日”,共青团中央号召全国青年积极参加志愿服务活动.甲、乙2人随机参加“文明交通”和“邻里互助”两项活动中的一项,那么2人参加的活动恰好相同的概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案