精英家教网 > 高中数学 > 题目详情
15.如果把一个多边形的所有边中的任意一条边向两方无限延长成为一直线时,其他各边都在此直线的同旁,那么这个多边形就叫做凸多边形,平面内凸四边形有2条对角线,凸五边形有5条对角线,以此类推,凸16边形的对角线条数为(  )
A.65B.96C.104D.112

分析 首先从特殊四边形的对角线观察起,则四边形是2条对角线,五边形有5=2+3条对角线,六边形有9=2+3+4条对角线,则七边形有9+5=14条对角线,则八边形有14+6=20条对角线.根据对角线条数的数据变化规律进行总结即得.

解答 解:可以通过列表归纳分析得到;

多边形45678
对角线22+32+3+42+3+4+52+3+4+5+6
16边形有2+3+4+…+14=$\frac{16×13}{2}$=104条对角线.
故选C.

点评 本题主要考查了多边形对角线的条数的公式总结,考查了简单的合情推理.解答关键是能够从特殊中找到规律进行计算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.△ABC的内角A,B,C所对的边分别为a,b,c,若A,B,C形成等差数列.
(1)求cosB的值;
(2)若b=$\sqrt{7}$,a=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知曲线C1:y=sinx,C2:y=sin(2x+$\frac{2π}{3}$),则下面结论正确的是(  )
A.把C1上各点的横坐标缩短到原来的$\frac{1}{2}$倍,纵坐标不变,再把得到的曲线向左平移$\frac{2π}{3}$个单位长度,得到曲线C2
B.把C1上各点的横坐标缩短到原来的$\frac{1}{2}$倍,纵坐标不变,再把得到的曲线向左平移$\frac{π}{3}$个单位长度,得到曲线C2
C.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移$\frac{2π}{3}$个单位长度,得到曲线C2
D.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个$\frac{π}{3}$单位长度,得到曲线C2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若变量x,y满足$\left\{\begin{array}{l}{x+y≤2}\\{2x-3y≤9}\\{x≥0}\end{array}\right.$,则2x-y的最大值是(  )
A.-2B.3C.7D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知sin(30°+α)=$\frac{4}{5}$,60°<α<150°,则cosα=$\frac{4-3\sqrt{3}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.给出以下数对序列:
(2,2)
(2,4)(4,2)
(2,6)(4,4)(6,2)
(2,8)(4,6)(6,4)(8,2)

记第i行的第j个数对为aij,如a43=(6,4),则aij=(2j,2i-2j+2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,在△OBC中,点A是BC的中点,$\overrightarrow{OD}$=2$\overrightarrow{DB}$,DC和OA交于点E,则AO与OE的比值为(  )
A.$\frac{6}{5}$B.$\frac{3}{2}$C.$\frac{5}{4}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,P是两条平行直线l1,l2之间的一个定点,且点P到l1,l2的距离分别为PA=1,PB=$\sqrt{3}$,设△PMN的另两个顶点M,N分别在l1,l2上运动,设∠MPN=α,∠PMN=β,∠PNM=γ,且满足sinβ+sinγ=sinα(cosβ+cosγ).
(Ⅰ)求α;
(Ⅱ)求$\frac{1}{PM}$+$\frac{\sqrt{3}}{PN}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若sinθ-cosθ=$\frac{1}{2}$,则sin($\frac{3π}{2}$-4θ)的值为(  )
A.$\frac{{3\sqrt{7}}}{8}$B.$-\frac{{3\sqrt{7}}}{8}$C.$\frac{1}{8}$D.$-\frac{1}{8}$

查看答案和解析>>

同步练习册答案