精英家教网 > 高中数学 > 题目详情
7.如图,P是两条平行直线l1,l2之间的一个定点,且点P到l1,l2的距离分别为PA=1,PB=$\sqrt{3}$,设△PMN的另两个顶点M,N分别在l1,l2上运动,设∠MPN=α,∠PMN=β,∠PNM=γ,且满足sinβ+sinγ=sinα(cosβ+cosγ).
(Ⅰ)求α;
(Ⅱ)求$\frac{1}{PM}$+$\frac{\sqrt{3}}{PN}$的最大值.

分析 (Ⅰ)设PN=a,PM=b,MN=c,由正弦定理及余弦定理得a+b=c×($\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}+\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$),从而a2+b2=c2,由此能求出α.
(Ⅱ)设∠MPA=θ,(0$<θ<\frac{π}{2}$),则∠NPB=$\frac{π}{2}-θ$,PM=$\frac{1}{cosθ}$,PN=$\frac{\sqrt{3}}{cos(\frac{π}{2}-θ)}$=$\frac{\sqrt{3}}{sinθ}$,由此能求出$\frac{1}{PM}$+$\frac{\sqrt{3}}{PN}$的最大值.

解答 解:(Ⅰ)∵设∠MPN=α,∠PMN=β,∠PNM=γ,
且满足sinβ+sinγ=sinα(cosβ+cosγ).
设PN=a,PM=b,MN=c,
∴由正弦定理及余弦定理得a+b=c×($\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}+\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$),
整理,得a2+b2=c2,∴PN⊥PM,
∴α=$∠MPN=\frac{π}{2}$.
(Ⅱ)设∠MPA=θ,(0$<θ<\frac{π}{2}$),则∠NPB=$\frac{π}{2}-θ$,
PM=$\frac{1}{cosθ}$,PN=$\frac{\sqrt{3}}{cos(\frac{π}{2}-θ)}$=$\frac{\sqrt{3}}{sinθ}$,
∴$\frac{1}{PM}$+$\frac{\sqrt{3}}{PN}$=cosθ+sinθ=$\sqrt{2}sin(θ+\frac{π}{4})≤\sqrt{2}$,
当$θ+\frac{π}{4}$=$\frac{π}{2}$,即$θ=\frac{π}{4}$时,取等号,
∴$\frac{1}{PM}$+$\frac{\sqrt{3}}{PN}$的最大值为$\sqrt{2}$.

点评 本题考查角的求法,考查代数式的最大值的求法,考查正弦定理、余弦定理、三角函数恒等变换等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.不等式x(1-x)>0的解集为(  )
A.(-1,0)B.(-∞,-1)∪(0,+∞)C.(0,1)D.(-∞,0)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如果把一个多边形的所有边中的任意一条边向两方无限延长成为一直线时,其他各边都在此直线的同旁,那么这个多边形就叫做凸多边形,平面内凸四边形有2条对角线,凸五边形有5条对角线,以此类推,凸16边形的对角线条数为(  )
A.65B.96C.104D.112

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.要得到函数y=sin2x的图象,只需将函数y=cos2x的图象(  )
A.向右平移$\frac{π}{4}$个单位B.向左平移$\frac{π}{4}$个单位
C.向右平移$\frac{π}{2}$个单位D.向左平移$\frac{π}{2}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.方程lg(2x2+x)=0的解x为-1或$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.阅读如图所示的程序框图,若输出的数据为21,则判断框中应填入的条件为(  )
A.k≤3B.k≤4C.k≤5D.k≤6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知角α的终边上一点P(-4,3),则cosα=(  )
A.-$\frac{3}{5}$B.$\frac{3}{5}$C.-$\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知角α的终边经过点P(4,-3),则2sinα+3cosα=$\frac{6}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若AB,AC,AD两两互相垂直,且AB=5,AC=4,AD=3,则三棱锥A-BCD的体积为10.

查看答案和解析>>

同步练习册答案