精英家教网 > 高中数学 > 题目详情
3.若变量x,y满足$\left\{\begin{array}{l}{x+y≤2}\\{2x-3y≤9}\\{x≥0}\end{array}\right.$,则2x-y的最大值是(  )
A.-2B.3C.7D.9

分析 由约束条件作出可行域,然后结合2x-y的几何意义,求得2x-y的最大值.

解答 解:由约束条件$\left\{\begin{array}{l}{x+y≤2}\\{2x-3y≤9}\\{x≥0}\end{array}\right.$,作出可行域如图,
设z=2x-y,则y=2x-z,当此直线经过图中B时,在y轴的截距最小,z最大,
由$\left\{\begin{array}{l}{x+y=2}\\{2x-3y=9}\end{array}\right.$得到B(3,-1),
∴2x-y的最大值为6+1=7;
故选C.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法和数学转化思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=$\left\{\begin{array}{l}{{e}^{ax}+3,x>0}\\{\frac{2}{3}{x}^{3}+{x}^{2}+4,x≤0}\end{array}\right.$在[-3,3]上的最大值为$\frac{13}{3}$,则实数a的取值范围是(  )
A.[0,$\frac{1}{3}$ln$\frac{4}{3}$]B.[$\frac{1}{3}$ln$\frac{4}{3}$,+∞)C.(-∞,0]D.(-∞,$\frac{1}{3}$ln$\frac{4}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.不等式x(1-x)>0的解集为(  )
A.(-1,0)B.(-∞,-1)∪(0,+∞)C.(0,1)D.(-∞,0)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则φ=(  )
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知圆C过点M(0,-2)和点N(3,1),且圆心C在直线x+2y+1=0上.
(1)求圆C的方程;
(2)过点(6,3)作圆C的切线,求切线方程;
(3)设直线l:y=x+m,且直线l被圆C所截得的弦为AB,满足$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知实数m>1,实数x,y满足不等式组$\left\{\begin{array}{l}{y≥x}\\{y≤2x}\\{x+y≤1}\end{array}\right.$,若目标函数z=x+my的最大值等于3,则m的值是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如果把一个多边形的所有边中的任意一条边向两方无限延长成为一直线时,其他各边都在此直线的同旁,那么这个多边形就叫做凸多边形,平面内凸四边形有2条对角线,凸五边形有5条对角线,以此类推,凸16边形的对角线条数为(  )
A.65B.96C.104D.112

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.要得到函数y=sin2x的图象,只需将函数y=cos2x的图象(  )
A.向右平移$\frac{π}{4}$个单位B.向左平移$\frac{π}{4}$个单位
C.向右平移$\frac{π}{2}$个单位D.向左平移$\frac{π}{2}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知角α的终边经过点P(4,-3),则2sinα+3cosα=$\frac{6}{5}$.

查看答案和解析>>

同步练习册答案