精英家教网 > 高中数学 > 题目详情
3.实数a,b,c满足a+b+c=3,ab+2c=6,则实数c的取值范围是(  )
A.(-∞,-5]∪[3,+∞)B.[-5,3]C.(-∞,-3]∪[5,+∞)D.[-3,5]

分析 实数a,b,c满足a+b+c=3,ab+2c=6,可得:a+b=3-c,ab=6-2c.因此a,b是方程x2+(c-3)x+(6-2c)=0的两个实数根,利用△≥0,即可得出.

解答 解:∵实数a,b,c满足a+b+c=3,ab+2c=6,
∴a+b=3-c,ab=6-2c.
∴a,b是方程x2+(c-3)x+(6-2c)=0的两个实数根.
∴△=(c-3)2-4(6-2c)≥0.化为:c2+2c-15≥0,
(c+5)(c-3)≥0,
解得:c≤-5,或c≥3.
∴实数c的取值范围是(-∞,-5]∪[3,+∞).
故选:A.

点评 本题考查了基本不等式的性质、方程的思想方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.与命题“若a∉M,则b∈M”等价的命题是(  )
A.若a∈M,则b∉MB.若b∈M,则a∉MC.若b∉M,则a∉MD.若b∉M,则a∈M

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若幂函数f(x)的图象经过点(3,$\frac{1}{9}$),则log2f(2)=(  )
A.-4B.4C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=|x-a|.
(1)若不等式f(x)≤9的解集为{x|-2≤x≤16},求实数a的值;
(2)在(1)的条件下,若不等式f(x)+f(x-1)≥m对一切实数x恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.不等式x(1-x)>0的解集为(  )
A.(-1,0)B.(-∞,-1)∪(0,+∞)C.(0,1)D.(-∞,0)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知sin($\frac{π}{6}$+α)=$\frac{1}{4}$,则cosα+$\sqrt{3}$sinα的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则φ=(  )
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知实数m>1,实数x,y满足不等式组$\left\{\begin{array}{l}{y≥x}\\{y≤2x}\\{x+y≤1}\end{array}\right.$,若目标函数z=x+my的最大值等于3,则m的值是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.阅读如图所示的程序框图,若输出的数据为21,则判断框中应填入的条件为(  )
A.k≤3B.k≤4C.k≤5D.k≤6

查看答案和解析>>

同步练习册答案