精英家教网 > 高中数学 > 题目详情

【题目】已知圆C的圆心C在x轴上,且圆C与直线 相切于点
(1)求n的值及圆C的方程;
(2)若圆M: 与圆C相切,求直线 截圆M所得的弦长.

【答案】
(1)解:∵由 ,∴n=﹣3,

过点 与直线 垂直的直线方程为

当y=o,x=1时,得C(1,0),圆C半径为

∴圆C的方程为(x﹣1)2+y2=1


(2)解:∵

∴当两圆外切时,|CM|=4=1+r,∴r=3,当两圆内切时,|CM|=r﹣1,∴r=5.

∵M到直线 的距离为

∴当r=3时,弦长为

当r=5时,弦长为


【解析】(1)利用点在直线上,求解n,求出垂线方程,求出圆心坐标,求出半径,即可得到圆的方程.(2)利用两个圆外切,求出半径,利用半径半弦长,圆心到直线的距离,满足勾股定理求解即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=alnx﹣x2+1.

(Ⅰ)若曲线y=f(x)在x=1处的切线方程为4x﹣y+b=0,求实数ab的值;

(Ⅱ)讨论函数f(x)的单调性;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在( n的展开式中,第6项为常数项.
(1)求n;
(2)求含x2项的系数;
(3)求展开式中所有的有理项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中共有8个球,其中3个红球、2个白球、3个黑球.若从袋中任取3个球,则所取3个球中至多有1个红球的概率是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)判断函数f(x)的奇偶性;
(2)判断f(x)在[2,+∞)上的单调性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知p:|1﹣ |≤2,q:x2﹣2x+1﹣m2≤0(m>0).若“非p”是“非q”的必要而不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列3个命题:
(1)函数f(x)在x>0时是增函数,x<0也是增函数,所以f(x)是增函数;
(2)若函数f(x)=ax2+bx+2与x轴没有交点,则b2﹣8a<0且a>0;
(3)y=x2﹣2|x|﹣3的递增区间为[1,+∞).
其中正确命题的个数是( )
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+2x+c(a、c∈N*)满足:①f(1)=5;②6<f(2)<11.
(1)求a、c的值;
(2)若对任意的实数x∈[ ],都有f(x)﹣2mx≤1成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)若函数上为减函数,求实数的最小值;

2)若存在,使成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案