【题目】如图,过抛物线y2=2px(p>0)上一点P(1,2),作两条直线分别交抛物线于A(x1,y1),B(x2,y2),当PA与PB的斜率存在且倾斜角互补时:
(1)求y1+y2的值;
(2)若直线AB在y轴上的截距b∈[﹣1,3]时,求△ABP面积S△ABP的最大值.
【答案】(1);(2)
【解析】
(1)由P在抛物线上,将P的坐标代入抛物线方程可得p,进而点到抛物线方程,再由A,B的坐标满足抛物线方程,结合两直线的倾斜角互补,可得它们的斜率之和为0,化简计算可得所求值;
(2)由点差法结合直线的斜率公式可得直线AB的斜率,设直线AB的方程为y=﹣x+b(b∈[﹣1,3]),联立抛物线方程,消去y,可得x的二次方程,运用韦达定理和弦长公式、点到直线的距离公式,以及三角形的面积公式,结合三元均值不等式,计算可得所求最大值.
解:(1)点P(1,2)为抛物线y2=2px(p>0)上一点,可得2p=4,即p=2,可得抛物线的方程为y2=4x,
由题意可得y12=4x1,y22=4x2,
kPA+kPB0,
则y1+y2=﹣4;
(2)由题意可得y12=4x1,y22=4x2,相减可得(y1﹣y2)(y1+y2)=4(x1﹣x2),
则kAB1,
可设直线AB的方程为y=﹣x+b(b∈[﹣1,3]),联立抛物线方程y2=4x,可得x2﹣(2b+4)x+b2=0,
△=(2b+4)2﹣4b2=16(1+b)>0,且x1+x2=2b+4,x1x2=b2,
则|AB||x1﹣x2|4,
P(1,2)到直线AB的距离为d,
可得S△ABP|AB|d=2(3﹣b),
设,则
当时,,函数单调递增,当时,函数的单调递减.
即时,有最大值
即
所以S△ABP,则S△ABP的最大值为.
科目:高中数学 来源: 题型:
【题目】为抗击新冠疫情,某企业组织员工进行用款捐物的爱心活动.原则上每人以自愿为基础,捐款不超过400元.现项目负责人统计全体员工数据后,下表为随机抽取的10名员工.的捐款数额.
员工编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
捐款数额 | 124 | 86 | 215 | 53 | 132 | 195 | 400 | 90 | 300 | 225 |
(1)若从这10名员工中任意选取3人,记选到的3人中捐款数额大于200元的人数为X,求X的分布列和数学期望:
(2)以表中选取的10人作为样本.估计该企业全体员工的捐款情况,现从企业员工中依次抽取8人,若抽到k人的捐款数额小于200元的可能性最大,求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下数表构造思路源于我国南宋数学家杨辉所著的《详解九章算法》一书中的“杨辉三角形”.
该表由若干行数字组成,从第二行起,第一行中的数字均等于其“肩上”两数之和,表中最后行仅有一个数,则这个数为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】由于《中国诗词大会》节目在社会上反响良好,某地也模仿并举办民间诗词大会,进入正赛的条件为:电脑随机抽取10首古诗,参赛者能够正确背诵6首及以上的进入正赛.若诗词爱好者甲、乙参赛,他们背诵每一首古诗正确的概率均为.
(1)求甲进入正赛的概率.
(2)若参赛者甲、乙都进入了正赛,现有两种赛制可供甲、乙进行PK,淘汰其中一人.
赛制一:积分淘汰制,电脑随机抽取4首古诗,每首古诗背诵正确加2分,错误减1分.由于难度增加,甲背诵每首古诗正确的概率为,乙背诵每首古诗正确的概率为,设甲的得分为,乙的得分为.
赛制二:对诗淘汰制,甲、乙轮流互出诗名,由对方背诵且互不影响,乙出题,甲回答正确的概率为0.3,甲出题,乙回答正确的概率为0.4,谁先背诵错误谁先出局.
(i)赛制一中,求甲、乙得分的均值,并预测谁会被淘汰;
(ii)赛制二中,谁先出题甲获胜的概率大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为响应国家“精准扶贫、精准脱贫”的号召,某贫困县在精准推进上下功夫,在精准扶贫上见实效.根据当地气候特点大力发展中医药产业,药用昆虫的使用相应愈来愈多,每年春暖以后到寒冬前,昆虫大量活动与繁殖,易于采取各种药用昆虫.已知一只药用昆虫的产卵数y(单位:个)与一定范围内的温度x(单位:℃)有关,于是科研人员在3月份的31天中随机选取了5天进行研究,现收集了该种药物昆虫的5组观察数据如表:
日期 | 2日 | 7日 | 15日 | 22日 | 30日 |
温度/℃ | 10 | 11 | 13 | 12 | 8 |
产卵数y/个 | 22 | 24 | 29 | 25 | 16 |
(1)从这5天中任选2天,记这2天药用昆虫的产卵数分别为m,n,求“事件m,n均不小于24”的概率?
(2)科研人员确定的研究方案是:先从这5组数据中任选2组,用剩下的3组数据建立线性回归方程,再对被选取的2组数据进行检验.
①若选取的是3月2日与3月30日这2组数据,请根据3月7日、15日和22日这三组数据,求出y关于x的线性回归方程?
②若由线性回归方程得到的估计数据与所选出的检验数据的差的绝对值均不超过2个,则认为得到的线性回归方程是可靠的,试问①中所得的线性回归方程是否可靠?
附公式:,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:
(1)求这100件产品质量指标值的样本平均数和样本方差(同一组的数据用该组区间的中点值作为代表);
(2)由直方图可以认为,这种产品的质量指标值服从正态分布,其中近似为样本平均数,近似为样本方差。
(i)若某用户从该企业购买了10件这种产品,记表示这10件产品中质量指标值位于(187.4,225.2)的产品件数,求;
(ii)一天内抽取的产品中,若出现了质量指标值在之外的产品,就认为这一天的生产过程中可能出现了异常情况,需对当天的生产过程进行检查下。下面的茎叶图是检验员在一天内抽取的15个产品的质量指标值,根据近似值判断是否需要对当天的生产过程进行检查。
附:,,,
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com