ÒÑÖªÊýÁÐ{an}£¬{bn}Âú×ãan=£¨
1
2
£© bn
£¨1£©ÈôÊýÁÐ{bn}ÊǵȲîÊýÁУ¬ÇóÖ¤{an}ÊǵȱÈÊýÁУ»
£¨2£©ÈôÊýÁÐ{an}µÄǰnÏîºÍΪSn=1-£¨
1
2
£©n
¢ÙÉè¶ÔÓÚÈÎÒâµÄÕýÕûÊýn£¬ºãÓÐ
1
an
£¾¦Ë£¨1+
1
2b1-1
£©£¨1+
1
2b2-1
£©£¨1+
1
2b3-1
£©¡­£¨1+
1
2bn-1
£©³ÉÁ¢£¬ÊÔÇóʵÊý¦ËµÄȡֵ·¶Î§£®
¢ÚÈôÊýÁÐ{cn}Âú×ãcn=
2
bn+1£¬ÎÊÊýÁÐ{cn}ÖÐÊÇ·ñ´æÔÚ²»Í¬µÄÈýÏî³ÉµÈ±ÈÊýÁУ¿Èç¹û´æÔÚ£¬ÇëÇó³öÕâÈýÏÈç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
¿¼µã£ºµÈ²îÊýÁÐÓëµÈ±ÈÊýÁеÄ×ÛºÏ
רÌ⣺×ÛºÏÌâ,µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ
·ÖÎö£º£¨1£©ÊýÁÐ{bn}ÊǵȲîÊýÁУ¬É蹫²îΪd£¬Ôòbn+1-bn=d¶Ôn¡ÊN*ºã³ÉÁ¢£¬½áºÏan=(
1
2
)bn
£¬¼´¿ÉÖ¤Ã÷{an}ÊǵȱÈÊýÁУ»
£¨2£©¢ÙÏÈÈ·¶¨ÊýÁÐ{an}µÄͨÏʽÊÇan=(
1
2
)n
£¬¿ÉµÃbn=n£¬²»µÈʽ
1
an
£¾¦Ë(1+
1
2b1-1
)(1+
1
2b2-1
)(1+
1
2b3-1
)¡­(1+
1
2bn-1
)
£¬·ÖÀë²ÎÊý£¬ÀûÓÃÇó×îÖµµÄ·½·¨£¬¼´¿ÉÇóʵÊý¦ËµÄȡֵ·¶Î§£»¢ÚÀûÓ÷´Ö¤·¨¿ÉÒԵóö½áÂÛ£®
½â´ð£º £¨1£©Ö¤Ã÷£ºÊýÁÐ{bn}ÊǵȲîÊýÁУ¬É蹫²îΪd£¬Ôòbn+1-bn=d¶Ôn¡ÊN*ºã³ÉÁ¢£¬
ÓÉÓÚan=(
1
2
)bn

ËùÒÔ
an+1
an
=(
1
2
)bn+1-bn=(
1
2
)d
ÊǶ¨Öµ£¬
´Ó¶øÊýÁÐ{an}ÊǵȱÈÊýÁУ®  ¡­£¨3·Ö£©
£¨2£©¢Ù½â£ºµ±n=1ʱ£¬a1=
1
2
£¬
µ±n¡Ý2ʱ£¬an=Sn-Sn-1=(
1
2
)n
£¬n=1Ò²ÊʺϴËʽ£¬¼´ÊýÁÐ{an}µÄͨÏʽÊÇan=(
1
2
)n
£®         ¡­£¨5·Ö£©
ËùÒÔ£¬bn=n¡­£¨6·Ö£©
²»µÈʽ
1
an
£¾¦Ë(1+
1
2b1-1
)(1+
1
2b2-1
)(1+
1
2b3-1
)¡­(1+
1
2bn-1
)

¿É»¯Îª¦Ë£¼2n¡Á
1¡Á3¡Á5¡Á¡­¡Á(2n-1)
2¡Á4¡Á6¡Á¡­¡Á2n
¡­£¨8·Ö£©
Áîf(n)=2n¡Á
1¡Á3¡Á5¡Á¡­¡Á(2n-1)
2¡Á4¡Á6¡Á¡­¡Á2n
£¨n¡ÊN*£©£¬Ôò¦Ë£¼f£¨n£©min¡­£¨9·Ö£©
ÓÖ
f(n+1)
f(n)
=¡­=2¡Á
2n+1
2n+2
=
2n+1
n+1
£¾1
ºã³ÉÁ¢£¬
ËùÒÔ£¬f£¨n£©µ¥µ÷Ôö                  ¡­£¨10·Ö£©
ËùÒÔ£¬f£¨n£©min=f£¨1£©=1£¬
ËùÒÔ£¬ËùÇóʵÊý¦ËµÄȡֵ·¶Î§Îª¦Ë£¼1¡­£¨11·Ö£©
¢Úcn=
2
n+1

¼ÙÉè´æÔÚ²»Í¬µÄÈýÏîcm£¬cn£¬ct³ÉµÈ±ÈÊýÁУ¬
ÓÉÓÚ{cn}Êǵ¥µ÷ÔöÊýÁУ¬²»·ÁÉèm£¼n£¼t£¬Ôòcn2=cmct£¬¡­£¨12·Ö£©
¡à(
2
n+1)2=(
2
m+1)(
2
t+1)

»¯¼òµÃ
2
(m+t-2n)=2n2-2mt
£¬¡­£¨13·Ö£©
ÓÉÓÚ
2
ÊÇÎÞÀíÊý£¬m+t-2n£¬2n2-2mt¾ùΪÕûÊý£¬
Òò´Ë
m+t-2n=0
2n2-2mt=0
¡­£¨14·Ö£©
ÏûÈ¥n£¬µÃm2-2mt+t2=0£¬¼´£¨m-t£©2=0
ËùÒÔ£¬m=t£¬Óëm£¼n£¼tì¶Ü                     ¡­£¨15·Ö£©
¹Ê²»´æÔÚ²»Í¬µÄÈýÏî³ÉµÈ±ÈÊýÁУ¬¡­£¨16·Ö£©
µãÆÀ£º±¾Ìâ½â¾öµÈ²îÊýÁÐÓëµÈ±ÈÊýÁеÄ×ۺϣ¬¿¼²éÊýÁеÄͨÏ¿¼²éºã³ÉÁ¢ÎÊÌ⣬ÀûÓú¯ÊýµÄ×îÖµÊǽâÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

x¡¢y£¾0£¬x+y=1£¬ÇÒ
x
+
y
¡Üaºã³ÉÁ¢£¬ÔòaµÄ×îСֵΪ£¨¡¡¡¡£©
A¡¢
2
2
B¡¢2
2
C¡¢2
D¡¢
2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª½Ç¦ÁÖձ߾­¹ýµãP£¨-4a£¬3a£©£¨a£¼0£©£¬Ôò2sin¦Á+cos¦ÁµÄֵΪ£¨¡¡¡¡£©
A¡¢-
2
5
B¡¢
2
5
C¡¢0
D¡¢-
2
5
»ò
2
5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ijУ¸ß¶þÄê¼¶ÒªÅųöÖÜÁùÉÏÎçµÄÓïÎÄ£¬Êýѧ£¬Ó¢ÓÎïÀí£¬»¯Ñ§£¬ÉúÎï6½Ú¿ÎµÄ¿Î³Ì±í£¬ÒªÇóÊýѧ¿Î²»ÅŵÚÒ»½Ú£¬Ó¢Óï¿Î²»ÅŵÚÁù½Ú£¬²»Í¬ÅÅ·¨ÖÖÊýÊÇ£¨¡¡¡¡£©
A¡¢600B¡¢504
C¡¢480D¡¢288

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÓÃÒ»¸öƽÐÐÓÚÔ²×¶µ×ÃæµÄÆ½Ãæ½ØÕâ¸öÔ²×¶£¬½ØµÃµÄԲ̨ÉÏ¡¢Ïµ×ÃæµÄÃæ»ýÖ®±ÈΪ1£º16£¬½ØÈ¥µÄÔ²×¶µÄĸÏß³¤ÊÇ3cm£¬ÔòԲ̨µÄĸÏß³¤ÊÇ£¨¡¡¡¡£©
A¡¢9cmB¡¢10cm
C¡¢12cmD¡¢15cm

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¦Á£¬¦Â¡Ê£¨0£¬¦Ð£©£¬ÇÒtan£¨¦Á-¦Â£©=
1
2
£¬tan¦Â=-
1
7

£¨1£©¼ÆËãtan¦Á¡¢tan2¦ÁµÄÖµ
£¨2£©Çó2¦Á-¦ÂµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Éèa£¬bΪÁ½¸ö»¥²»ÏàµÈµÄÕýÊý£¬ÇÒa+b=1£¬ÇóÖ¤£º
1
a
+
1
b
£¾4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

³µ¼äÓÐ11Ãû¹¤ÈË£¬ÆäÖÐ5ÃûÄй¤ÊÇǯ¹¤£¬4ÃûÅ®¹¤Êdzµ¹¤£¬ÁíÍâ2ÃûÀÏʦ¸µ¼ÈÄܵ±³µ¹¤£¬ÓÖÄܵ±Ç¯¹¤£¬ÏÖÔÚÒªÔÚÕâ11Ãû¹¤ÈËÀïÑ¡ÅÉ4Ãûǯ¹¤¡¢4Ãû³µ¹¤ÐÞÀíһ̨»ú´²£¬ÎÊÓжàÉÙÖÖÑ¡ÅÉ·½·¨£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=2cos£¨x-
¦Ð
12
£©£¬x¡ÊR£®
£¨¢ñ£©Çóf£¨-
¦Ð
6
£©µÄÖµ£»
£¨¢ò£©Èôcos£¨¦È+
¦Ð
3
£©=
3
5
£¬¦È¡Ê£¨-
¦Ð
2
£¬
¦Ð
2
£©£¬Çóf£¨2¦È+
¦Ð
12
£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸