精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2cos(x-
π
12
),x∈R.
(Ⅰ)求f(-
π
6
)的值;
(Ⅱ)若cos(θ+
π
3
)=
3
5
,θ∈(-
π
2
π
2
),求f(2θ+
π
12
).
考点:二倍角的余弦,二倍角的正弦
专题:三角函数的求值
分析:(I)根据函数f(x)的解析式,即可求得f(-
π
6
)的值.
(II)根据θ∈(-
π
2
π
2
)及cos(θ+
π
3
)=
3
5
,求得sin(θ+
π
3
)=
4
5
.再利用二倍角公式求得 cos2(θ+
π
3
)和sin2(θ+
π
3
)的值.再由 f(2θ+
π
12
)=2cos2θ=2cos[2(θ+
π
3
)-
3
],利用两角差的余弦公式计算求得结果.
解答: 解:(I)∵函数f(x)=2cos(x-
π
12
),∴f(-
π
6
)=2cos(-
π
6
-
π
12
)=2cos(-
π
4
)=cos
π
4
=
2

(II)∵θ∈(-
π
2
π
2
),∴-
π
6
<θ+
π
3
6

∵cos(θ+
π
3
)=
3
5
∈(
1
2
2
2
)∴
π
4
<θ+
π
3
π
3
,∴sin(θ+
π
3
)=
4
5

∴cos2(θ+
π
3
)=2cos2(θ+
π
3
)
-1=-
7
25
,sin2(θ+
π
3
)=2sin(θ+
π
3
)cos(θ+
π
3
)=
24
25

∴f(2θ+
π
12
)=2cos(2θ+
π
12
-
π
12
)=2cos2θ=2cos[2(θ+
π
3
)-
3
]=2cos2(θ+
π
3
)cos
3
+2sin2(θ+
π
3
)sin
3

=2×(-
7
25
)×(-
1
2
)+2
24
25
×
3
2
=
7+24
3
25
点评:本题主要考查同角三角函数的基本关系、诱导公式、二倍角公式的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an},{bn}满足an=(
1
2
 bn
(1)若数列{bn}是等差数列,求证{an}是等比数列;
(2)若数列{an}的前n项和为Sn=1-(
1
2
n
①设对于任意的正整数n,恒有
1
an
>λ(1+
1
2b1-1
)(1+
1
2b2-1
)(1+
1
2b3-1
)…(1+
1
2bn-1
)成立,试求实数λ的取值范围.
②若数列{cn}满足cn=
2
bn+1,问数列{cn}中是否存在不同的三项成等比数列?如果存在,请求出这三项;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对的边分别为为a,b,c,且sin2B-sinB=0
(Ⅰ)求角B;
(Ⅱ)若b=2
2
,S△ABC=2
3
,求a,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示茎叶图记录了甲、乙两组各三名同学在期末考试的数学成绩,乙组记录中有一个数字模糊,无法确认.假设这个数字具有随机性,并在图中以a表示.
(1)若甲、乙两个小组的数学平均成绩相同,求a的值;
(2)求乙组平均成绩超过甲组平均成绩的概率;
(3)当a=2时,分别从甲、乙两组中各随机选取一名同学,设这两名同学成绩之差的绝对值为X,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2
3
cosxsinx+2cos2x
(1)求f(
3
)的值;
(2)当x∈[0,
π
2
]时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,E为AD上一点,PE⊥平面ABCD.AD∥BC,AD⊥CD,BC=ED=2AE=2,EB=3,F为PC上一点,且CF=2FP.
(Ⅰ)求证:PA∥平面BEF;
(Ⅱ)若二面角F-BE-C为60°,求tan∠APD的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

过椭圆E:
x2
2
+y2=1的右焦点且垂直于x轴的直线与椭圆E相交于A,B 两点,直线l:y=mx+n与椭圆E交于C,D两点,与线段AB相交于点P(与A,B不重合).
(Ⅰ)当m=1时,四边形ACBD能否成为平行四边形,请说明理由;
(Ⅱ)当直线l与圆x2+y2=1相切时,四边形ACBD的面积是否有最大值,若有,求出其最大值,及对应的直线l的方程;若没有,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知i为虚数单位,在复平面内复数
2i
1+i
对应点的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若圆锥的内切球与外接球的球心重合,且内切球的半径为1,则圆锥的体积为
 

查看答案和解析>>

同步练习册答案