精英家教网 > 高中数学 > 题目详情
10.执行如图所示的程序框图,若输入x=20,则输出的y的值为(  )
A.2B.-1C.-$\frac{13}{4}$D.-$\frac{5}{2}$

分析 分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算并输出变量y的值,模拟程序的运行,用表格对程序运行过程中各变量的值进行分析,不难得到输出结果.

解答 解:程序在运行过程中各变量的值如下表示:
x   y|y-x|是否小于或等于2  是否继续循环
循环前  20/
第一圈  20  8|8-20|=12>2    是
第二圈  8   2|2-8|=6>2      是
第三圈  2-1|-1-2|=3>2      是
第四圈-1-$\frac{5}{2}$|-$\frac{5}{2}$-(-1)|=$\frac{3}{2}$<2  否
故输出y的值为-$\frac{5}{2}$.
故选:D.

点评 根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知定义在R上的奇函数f(x)满足f(x+3)=f(x),且当x∈[0,$\frac{3}{2}$)时,f(x)=一x3.则f($\frac{11}{2}$)=(  )
A.-$\frac{1}{8}$B.$\frac{1}{8}$C.-$\frac{125}{8}$D.$\frac{125}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某化肥厂生产甲、乙两种混合肥料,需要A、B两种主要原料,生产1吨甲种肥料和生产1吨乙种肥料所需两种原料的吨数如下表所示:
原料
肥料
AB
31
22
每日可用A种原料12吨,B种原料8吨,已知生产1吨甲种肥料可获利润3万元;生产1吨乙种肥料可获利润4万元,分别用x,y表示计划生产甲、乙两种肥料的吨数.
(1)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;
(2)问每日分别生产甲、乙两种肥料各多少吨,能够产生最大利润?并求出此最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设f(x)=ex,f(x)=g(x)-h(x),且g(x)为偶函数,h(x)为奇函数,若存在实数m,当x∈[-1,1]时,不等式mg(x)+h(x)≥0成立,则m的最小值为(  )
A.$\frac{{e}^{2}-1}{{e}^{2}+1}$B.$\frac{2}{{e}^{2}+1}$C.$\frac{{e}^{2}+1}{{e}^{2}-1}$D.$\frac{1-{e}^{2}}{1+{e}^{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=lnx+(e-a)x-b,其中e为自然对数的底数.若不等式f(x)≤0恒成立,则$\frac{b}{a}$的最小值为-$\frac{1}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)左、右焦点分别为F1,F2,A(2,0)是椭圆的右顶点,过F2且垂直于x轴的直线交椭圆于P,Q两点,且|PQ|=3;
(1)求椭圆的方程;
(2)若直线l与椭圆交于两点M,N(M,N不同于点A),若$\overrightarrow{AM}$•$\overrightarrow{AN}$=0,$\overrightarrow{MT}$=$\overrightarrow{TN}$;
①求证:直线l过定点;并求出定点坐标;
②求直线AT的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.①命题“?x≥1,x2+3≥4”的否定是“?x<1,x2+3<4”
②A、B、C三种不同型号的产品的数量之比依次为2:3:4,用分层抽样抽出方法抽出一个容量为n的样本,样本中A种型号产品有16件,那么样本的容量n=72
③命题“若x,y都是偶数,则x+y是偶数”的否命题是“若x,y都不是偶数,则x+y不是偶数”
④若非空集合M?N,则“a∈M或a∈N”是“a∈M∩N”的必要不充分条件
以上四个命题正确的是②④(把你认为正确的命题序号都填在横线上).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设数列{an}的前n项和为Sn,且对任意的n∈N*,都有an>0,Sn=$\sqrt{{a_1}^3+{a_2}^3+…+{a_n}^3}$
(I)求a1,a2的值;
(II)求数列{an}的通项公式an
(III)证明:ln2≤an•ln(1+$\frac{1}{{a}_{n}}$)<ln3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=lnx,g(x)=ex
(1)若函数y=ax+f(x)在区间(0,e]上的最大值为-4,求实数a的值;
(2)若函数y=ag(2x)+bg(x)-x有两个不同的零点x1,x2,x0是x1,x2的等差中项,证明:当a>0时,不等式2ag (2x0)+bg(x0)<f(e)成立.

查看答案和解析>>

同步练习册答案