精英家教网 > 高中数学 > 题目详情

(本小题满分13分)
已知.
(I)求函数上的最小值;
(II)对一切恒成立,求实数的取值范围.

解:(1)定义域为
,,单调递减,
单调递增.   ……………………………………2分
①当无解;……………………………………………………………3分
②当,即时,; …………4分
③当时,上单调递增,
………5分
所以                              ………6分
(2),则,对一切恒成立.……7分
,则
单调递减,
单调递增.                   …………10分
上,有唯一极小值,即为最小值.
所以,因为对一切恒成成立,
所以.                            ……………………………13分

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题14分)已知函数.
(1)若,求曲线处切线的斜率;
(2)求的单调区间;
(3)设,若对任意,均存在,使得,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)当  时,求函数  的最小值;
(Ⅱ)当  时,讨论函数  的单调性;
(Ⅲ)求证:当 时,对任意的 ,且,有

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数定义域为),设
(1)试确定的取值范围,使得函数上为单调函数;
(2)求证:
(3)求证:对于任意的,总存在,满足,并确定这样的的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)已知函数
(1)若函数在定义域上为单调增函数,求的取值范围;
(2)设

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,求函数上的最小值;
(2)若函数上存在单调递增区间,试求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)设函数,.
(Ⅰ)当时,上恒成立,求实数的取值范围;
(Ⅱ)当时,若函数上恰有两个不同零点,求实数的取值范围;
(Ⅲ)是否存在实数,使函数和函数在公共定义域上具有相同的单调性?若存在,求出的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=ax+ (a,b∈Z),曲线y=f(x)在点(2,f(2))处的切线方
程为y=3.
(1)求f(x)的解析式;
(2)证明:曲线y=f(x)上任一点的切线与直线x=1和直线y=x所围三角形的面积为定值,
并求出此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

给出一个不等式(x∈R),经验证:当c=1,2,3时,不等式对一切实数x都成立。试问:当c取任何正数时,不等式对任何实数x是否都成立?若能成立,请给出证明;若不成立,请求出c的取值范围,使不等式对任何实数x都能成立。

查看答案和解析>>

同步练习册答案