精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=9x﹣3x+1+c(其中c是常数).
(1)若当x∈[0,1]时,恒有f(x)<0成立,求实数c的取值范围;
(2)若存在x0∈[0,1],使f(x0)<0成立,求实数c的取值范围.

【答案】
(1)解:f(x)=(3x2﹣3×3x+c,令3x=t,当x∈[0,1]时,t∈[1,3].

问题转化为当t∈[1,3]时,g(t)=t2﹣3t+c<0恒成立.

于是,只需g(t)在[1,3]上的最大值g(3)<0,即32﹣3×3+c<0,解得c<0.

∴实数c的取值范围是(﹣∞,0)


(2)解:若存在x0∈[0,1],使f(x0)<0,则存在t∈[1,3],使g(t)=t2﹣3t+c<0.

于是,只需g(t)在[1,3]上的最小值 <0,即 ,解得

∴实数c的取值范围是


【解析】(1)令3x=t把函数换元,化为关于t的二次函数,利用函数的单调性求出函数的最大值,由最大值小于0得答案;(2)由(1)中二次函数的最小值小于0求解c的范围.
【考点精析】根据题目的已知条件,利用二次函数在闭区间上的最值的相关知识可以得到问题的答案,需要掌握当时,当时,;当时在上递减,当时,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,曲线的参数方程为为参数),在以原点为极点, 轴正半轴为极轴的极坐标系中,直线的极坐标方程为.

(1)求曲线的普通方程和直线的倾斜角;

(2)设点,直线和曲线交于 两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,直线.

(1)若直线与曲线相切,求切点横坐标的值;

(2)若函数,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当为何值时, 轴为曲线的切线;

(2)用表示中的最小值,设函数,讨论零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的. [附:回归直线的斜率和截距的最小二乘估计公式分别为.]

(1)根据频率分布直方图计算图中各小长方形的宽度;

(2)试估计该公司投入万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);

(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:

广告投入 (单位:万元)

1

2

3

4

5

销售收益 (单位:万元)

2

3

2

7

由表中的数据显示, 之间存在着线性相关关系,请将(2)的结果填入空白栏,并求出关于的回归直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足an+1=2an+n﹣1,且a1=1.
(Ⅰ)求证:{an+n}为等比数列;
(Ⅱ)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某几何体的三视图如图所示,则该几何体的表面积为(

A.16
B.26
C.32
D.20+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(文)已知y=f(x)是偶函数,y=g(x)是奇函数,它们的定义域均为[﹣3,3],且它们在x∈[0,3]上的图象如图所示,则不等式 的解集是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数, 是自然对数的底数),曲线在点处的切线与轴平行.

1)求的值;

2)求的单调区间;

3)设,其中的导函数.证明:对任意

查看答案和解析>>

同步练习册答案