精英家教网 > 高中数学 > 题目详情

【题目】(文)已知y=f(x)是偶函数,y=g(x)是奇函数,它们的定义域均为[﹣3,3],且它们在x∈[0,3]上的图象如图所示,则不等式 的解集是

【答案】{x|﹣2<x<﹣1或0<x<1或2<x<3}
【解析】解:将不等式 转化为:f(x)g(x)<0
如图所示:当x>0时其解集为:(0,1)∪(2,3)
∵y=f(x)是偶函数,y=g(x)是奇函数
∴f(x)g(x)是奇函数
∴当x<0时,f(x)g(x)>0
∴其解集为:(﹣2,﹣1)
综上:不等式 的解集是{x|﹣2<x<﹣1或0<x<1或2<x<3}
所以答案是:{x|﹣2<x<﹣1或0<x<1或2<x<3}
【考点精析】关于本题考查的函数奇偶性的性质,需要了解在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若不等式的解集为,求实数的值;

(2)在(1)的条件下,若存在实数使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=9x﹣3x+1+c(其中c是常数).
(1)若当x∈[0,1]时,恒有f(x)<0成立,求实数c的取值范围;
(2)若存在x0∈[0,1],使f(x0)<0成立,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为a的正方体ABCD﹣A1B1C1D1中,E,F,P,Q分别是BC,C1D1 , AD1 , BD的中点.

(1)求证:PQ∥平面DCC1D1
(2)求PQ的长;
(3)求证:EF∥平面BB1D1D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

设函数.

(Ⅰ)当时,求函数的极小值;

(Ⅱ)讨论函数零点的个数;

(Ⅲ)若对任意的恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x|x+bx+c,给出下列4个命题:
①b=0,c>0时,方程f(x)=0只有一个实数根;
②c=0时,y=f(x)是奇函数;
③y=f(x)的图象关于点(0,c)对称;
④方程f(x)=0至多有2个不相等的实数根.
上述命题中的所有正确命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga (a>0,a≠1).
(1)当a>1时,讨论f(x)的奇偶性,并证明函数f(x)在(1,+∞)上为单调递减;
(2)当x∈(n,a﹣2)时,是否存在实数a和n,使得函数f(x)的值域为(1,+∞),若存在,求出实数a与n的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+ax+6.
(1)当a=5时,解不等式f(x)<0;
(2)若不等式f(x)>0的解集为R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设非空集合s={x|m≤x≤l}满足:当x∈S时,有y=x2∈S.给出如下三个命题:
①若m=1,则S={1};
②若m=﹣ ,则 ≤l≤1;
③若l= ,则﹣ ≤m≤0.
④若l=1,则﹣1≤m≤0或m=1.
其中正确命题的是

查看答案和解析>>

同步练习册答案