精英家教网 > 高中数学 > 题目详情

【题目】已知某几何体的三视图如图所示,则该几何体的表面积为(

A.16
B.26
C.32
D.20+

【答案】C
【解析】解:根据三视图知:该几何体是三棱锥,且三棱锥的一个侧棱与底面垂直,高为4,
如图所示:
其中SC⊥平面ABC,SC=3,AB=4,BC=3,AC=5,SC=4,∴AB⊥BC,
由三垂线定理得:AB⊥BC,
SABC= ×3×4=6,
SSBC= ×3×4=6,
SSAC= ×4×5=10,
SSAB= ×AB×SB= ×4×5=10,
∴该几何体的表面积S=6+6+10+10=32.
故选:C.
【考点精析】通过灵活运用由三视图求面积、体积,掌握求体积的关键是求出底面积和高;求全面积的关键是求出各个侧面的面积即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若关于x的方程:x2+4xsinθ+atanθ=0( <θ< )有两个相等的实数根.则实数a的取值范围为(
A.( ,2)
B.(2 ,4)
C.(0,2)
D.(﹣2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知单调递增的等比数列{an}满足:a2+a3+a4=28,且a3+2是a2 , a4的等差中项
①求数列{an}的通项公式;
②设bn=anlog2an , 求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=9x﹣3x+1+c(其中c是常数).
(1)若当x∈[0,1]时,恒有f(x)<0成立,求实数c的取值范围;
(2)若存在x0∈[0,1],使f(x0)<0成立,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家电公司销售部门共有200位销售员,每位部门对每位销售员都有1400万元的年度销售任务,已知这200位销售员去年完成销售额都在区间(单位:百万元)内,现将其分成5组,第1组,第2组,第3组,第4组,第5组对应的区间分别为 ,绘制出频率分布直方图.

(1)求的值,并计算完成年度任务的人数;

(2)用分层抽样从这200位销售员中抽取容量为25的样本,求这5组分别应抽取的人数;

(3)现从(2)中完成年度任务的销售员中随机选取2位,奖励海南三亚三日游,求获得此奖励的2位销售员在同一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为a的正方体ABCD﹣A1B1C1D1中,E,F,P,Q分别是BC,C1D1 , AD1 , BD的中点.

(1)求证:PQ∥平面DCC1D1
(2)求PQ的长;
(3)求证:EF∥平面BB1D1D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

设函数.

(Ⅰ)当时,求函数的极小值;

(Ⅱ)讨论函数零点的个数;

(Ⅲ)若对任意的恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga (a>0,a≠1).
(1)当a>1时,讨论f(x)的奇偶性,并证明函数f(x)在(1,+∞)上为单调递减;
(2)当x∈(n,a﹣2)时,是否存在实数a和n,使得函数f(x)的值域为(1,+∞),若存在,求出实数a与n的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(1),在平行四边形中, , 分别为的中点.现把平行四边形沿折起,如图(2)所示,连结.

1)求证:

2)若,求二面角的余弦值.

查看答案和解析>>

同步练习册答案