精英家教网 > 高中数学 > 题目详情
18.在极坐标系中,已知三点M(2,一$\frac{π}{3}$),N(2,0),P(2$\sqrt{3}$,$\frac{π}{6}$).
(])求线段MN的长;
(2)判断M,N,P三点是否在一条直线上,说明理由.

分析 (1)由已知可得:∠MON=$\frac{π}{3}$,|OM|=|ON|,可得△OMN是等边三角形,即可得出结论.
(2)三点M,N,P分别化为直角坐标:M$(1,-\sqrt{3})$,N(2,0),P(3,$\sqrt{3}$).分别计算斜率kMN,kNP,即可判断出结论.

解答 解:(1)∵M(2,一$\frac{π}{3}$),N(2,0),
∴∠MON=$\frac{π}{3}$,又|OM|=|ON|,
∴△OMN是等边三角形,∴|MN|=2.
(2)三点M(2,一$\frac{π}{3}$),N(2,0),P(2$\sqrt{3}$,$\frac{π}{6}$)分别化为直角坐标:M$(1,-\sqrt{3})$,N(2,0),P(3,$\sqrt{3}$).
kMN=$\frac{-\sqrt{3}-0}{1-2}$=$\sqrt{3}$,kNP=$\frac{0-\sqrt{3}}{2-3}$=$\sqrt{3}$,
∴kMN=kNP
∴M,N,P三点在一条直线上.

点评 本题考查了极坐标与直角坐标的互化及其应用、斜率计算公式、等边三角形的判定,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知圆O的方程为x2+y2=9,圆内一点C(2,1),过C且不过圆心的动直线l交圆O于P、Q两点,圆心O到直线l的距离为d.
(1)用d表示△OPQ的面积S,并写出函数S(d)定义域;
(2)求S的最大值并求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=lnx+ax在点(t,f(t))处切线方程为y=2x-1
(Ⅰ)求a的值
(Ⅱ)若$-\frac{1}{2}≤k≤2$,证明:当x>1时,$f(x)>k({1-\frac{3}{x}})+x-1$
(Ⅲ)对于在(0,1)中的任意一个常数b,是否存在正数x0,使得:${e^{f({{x_0}+1})-2{x_0}-1}}+\frac{b}{2}x_0^2<1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图所示,正四棱锥P-ABCD的高为2,AB=3,E为PB的中点.
(1)建立合适的坐标系,并写出所有点的坐标.
(2)求出CE的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系xoy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$(θ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是$\sqrt{2}$ρsin(θ-$\frac{π}{4}$)=1
(Ⅰ)求曲线C1的普通方程和曲线C2的直角坐标方程;
(Ⅱ)曲线C1和曲线C2相交于点M,N,求通过M,N两点的圆中面积最小的圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.极坐标方程ρcos(θ+$\frac{π}{3}$)=7与方程2ρsin(θ-$\frac{π}{6}$)=29的两图形的位置关系为(  )
A.平行B.垂直C.斜交D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在平面直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,已知M为曲线C1:ρ=4sinθ上任意一点,$\overrightarrow{OP}$=2$\overrightarrow{OM}$,点P的轨迹记为C2
(1)求曲线C2的极坐标方程;
(2)直线θ=$\frac{π}{3}$与C1交于点A,直线θ=$\frac{2π}{3}$与C2交于点B,点A、B均异于O,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知f(x)=log2$\frac{x+1}{x-1}$+log2(x-1)+log2(p-x)
(1)求f(x)的定义域;
(2)若函数f(x)的值域为(-∞,log2$\frac{(p+1)^{2}}{4}$],求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知A(0,2),圆C:(x-a)2+y2=1.
(1)当a=1时,求直线2x-y-1=0被圆C截得的弦长;
(2)若圆C上存在点M,满足条件|MA|=3,求实数a的取值范围.

查看答案和解析>>

同步练习册答案