精英家教网 > 高中数学 > 题目详情
5.已知双曲线$\frac{{x}^{2}}{a^2}$$-\frac{{y}^{2}}{{b}^{2}}$=1的左、右焦点分别是F1,F2,P是双曲线右支上的一点,若|PF2|=|F1F2|且∠PF2F1=120°,则双曲线的离心率等于$\frac{\sqrt{3}+1}{2}$.

分析 运用余弦定理可得|PF1|=2$\sqrt{3}$c,再由双曲线的定义可得|PF1|-|PF2|=2a,即为2$\sqrt{3}$c-2c=2a,运用离心率公式计算即可得到所求值.

解答 解:由题意可得|PF2|=|F1F2|=2c,∠PF2F1=120°,
即有|PF1|2=|PF2|2+|F1F2|2-2|PF2|•|F1F2|cos∠PF2F1
=4c2+4c2-2•4c2•(-$\frac{1}{2}$)
=12c2,即有|PF1|=2$\sqrt{3}$c,
由双曲线的定义可得|PF1|-|PF2|=2a,即为2$\sqrt{3}$c-2c=2a,
即有c=$\frac{\sqrt{3}+1}{2}$a,可得e=$\frac{c}{a}$=$\frac{\sqrt{3}+1}{2}$.
故答案为:$\frac{\sqrt{3}+1}{2}$.

点评 本题考查双曲线的离心率的求法,注意运用余弦定理和双曲线的定义,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.计算:$\underset{lim}{n→∞}$$\frac{{P}_{n}^{2}+{C}_{n}^{2}}{(n+1)^{2}}$=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}满足a1=1,且an+1=an+$\frac{{a}_{n}+{n}^{2}+n}{n}$.
(1)证明:数列{$\frac{{a}_{n}}{n}$}为等差数列;
(2)若数列{bn}满足anbn=2nn2-n3,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知点A(1,0),B(0,1),C(2sin(θ-$\frac{π}{4}$),cos($θ-\frac{π}{4}$)),且|$\overrightarrow{AC}$|=|$\overrightarrow{BC}$|.
(1)求tan($θ-\frac{π}{4}$)的值;
(2)若θ-$\frac{π}{4}$∈(0,$\frac{π}{2}$),求cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=asin(πx+θ)+bcos(πx+θ)+x,且f(2006)=2005,则f(2007)的值为(  )
A.2005B.2006C.2007D.2008

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.不等式|2x-a|<b的解集是(2,4),则a=6,b=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.△ABC中,a=4,b=5,c=6,则△ABC中,acosB+bcosA=6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知等比数列{an}中,a1=$\frac{1}{2}$,S3=$\frac{3}{2}$,则公比q的值为1或-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(x)是定义在R上的奇函数,当x≥0时,$f(x)=\sqrt{x}$
(1)求f(9)和f(-4);
(2)求f(x)的解析式;
(3)当x∈A时,f(x)∈[-7,3],求区间A.

查看答案和解析>>

同步练习册答案