分析 先利用排列组合公式,将原式化简成$\underset{lim}{n→∞}$$\frac{3}{2}•\frac{{n}^{2}-n}{{n}^{2}+2n+1}$的形式,再求极限.
解答 解:$\underset{lim}{n→∞}$$\frac{{P}_{n}^{2}+{C}_{n}^{2}}{(n+1)^{2}}$=$\underset{lim}{n→∞}$$\frac{n(n-1)+\frac{n(n-1)}{2}}{(n+1)^{2}}$=$\underset{lim}{n→∞}$$\frac{3}{2}•\frac{{n}^{2}-n}{{n}^{2}+2n+1}$
=$\frac{3}{2}$.
故答案为:$\frac{3}{2}$.
点评 本题考查通过化简求极限值,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{2}$ | B. | 3$\sqrt{2}$ | C. | $\frac{3\sqrt{3}}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2n | B. | 2n | C. | 2n+1-2 | D. | n2+n |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com