精英家教网 > 高中数学 > 题目详情
某毕业生参加人才招聘会,分别向甲、乙、丙、丁四个公司投递了个人简历,假定该毕业生得到每个公司面试的概率均为p,且三个公司是否让其面试是相互独立的.记X为该毕业生得到面试的公司个数.若P(X=0)=
1
81
,则随机变量X的数学期望E(X)=
 
考点:离散型随机变量的期望与方差
专题:计算题,概率与统计
分析:根据P(X=0)=
1
81
,求出p,利用X的可能取值,结合变量对应的事件写出概率和做出期望.
解答: 解:由题意,(1-p)4=
1
81
,∴p=
2
3

P(X=1)=
C
1
4
2
3
•(
1
3
)3
=
8
81
;P(X=2)=
C
2
4
•(
2
3
)2•(
1
3
)2
=
24
81
;P(X=3)=
C
3
4
•(
2
3
)3
1
3
=
32
81
;P(X=4)=
C
4
4
•(
2
3
)4
=
16
81

∴E(X)=0×
1
81
+1×
8
81
+2×
24
81
+3×
32
81
+4×
16
81
=
8
3

故答案为:
8
3
点评:本题考查离散型随机变量的分布列和离散型随机变量的期望,考查学生的计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,设点A,B的坐标分别为(-3,0),(3,0).直线AM,BM相交于点M,且它们的斜率之积是-
4
5
,求点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,已知a1=
1
4
an+1
an
=
1
4
,bn+2=3log
1
4
an(n∈N*).
(1)求数列{an}、{bn}的通项公式;
(2)设数列{cn}满足cn=an•bn,求{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

直线:y=x+b与曲线:x=
1-y2
有二个不同的公共点,则b的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}时公差不为零的等差数列,a1=1,a1,a3,a9成等比数列,则数列{an2an}的前n项和sn=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x,y满足
x+y-1≥0
x≤2
y≤3
,则z=y-x的最小值是(  )
A、1B、5C、-3D、-5

查看答案和解析>>

科目:高中数学 来源: 题型:

圆心为(1,2),半径为1的圆的标准方程为(  )
A、x2+(y-2)2=1
B、x2+(y+2)2=1
C、(x-1)2+(y-2)2=1
D、(x+1)2+(y+2)2=1

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的方程|x2-2x-3|-m+5=0有4个根,则m的取值范围为(  )
A、(0,4)
B、(5,9)
C、(0,4]
D、(5,9]

查看答案和解析>>

科目:高中数学 来源: 题型:

舒城某运输公司接受了向我县偏远地区每天送至少180t生活物资的任务.该公司有8辆载重6t的A型卡车与4辆载重为10 t的B型卡车,有10名驾驶员,每辆卡车每天往返的次数为A型卡车4次,B型卡车3次;每辆卡车每天往返的成本费A型为320元,B型为504元.请为公司安排一下,应如何调配车辆,才能使公司所花的成本费最低?若只安排A型或B型卡车,所花的成本费分别是多少?

查看答案和解析>>

同步练习册答案