精英家教网 > 高中数学 > 题目详情
16.在△ABC中,a、b、c分别为角A、B、C的对边,4sin2$\frac{B+C}{2}$-cos2A=$\frac{7}{2}$.
(Ⅰ)求角A的度数;
(Ⅱ)若a=$\sqrt{3}$,b+c=3,求△ABC的面积.

分析 (Ⅰ)根据诱导公式和二倍角公式即可求出;
(Ⅱ)根据余弦定理求出bc,再根据三角形的面积公式计算即可.

解答 解:(Ⅰ)∵B+C=π-A,即$\frac{B+C}{2}$=$\frac{π}{2}-\frac{A}{2}$,
由4sin2$\frac{B+C}{2}$-cos 2A=$\frac{7}{2}$,得4cos2$\frac{A}{2}$-cos 2A=$\frac{7}{2}$,
即2(1+cos A)-(2cos2A-1)=$\frac{7}{2}$,
整理得4cos2A-4cos A+1=0,即(2cos A-1)2=0.
∴cos A=$\frac{1}{2}$,又0°<A<180°,
∴A=60°.
(Ⅱ)由A=60°,根据余弦定理cos A=$\frac{{{b^2}+{c^2}-{a^2}}}{2bc}$,得$\frac{{{b^2}+{c^2}-{a^2}}}{2bc}$=$\frac{1}{2}$.
∴b2+c2-bc=3,即(b+c)2-3bc=3,
∴bc=2
∴S△ABC=$\frac{1}{2}$bcsinA=$\frac{1}{2}$×1×2×sin 60°=$\frac{{\sqrt{3}}}{2}$.

点评 本题主要考查了正弦定理,余弦定理,三角形面积公式,特殊角的三角函数值在解三角形中的应用,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.一个半径为2的扇形的面积的数值是4,则这个扇形的中心角的弧度数为(  )
A.1B.$\sqrt{2}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设非空集合A,B满足A⊆B,则以下表述正确的是(  )
A.?x0∈A,x0∈BB.?x∈A,x∈BC.?x0∈B,x0∉AD.?x∈B,x∈A

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在棱长为1的正方体ABCD-A1B1C1D1中:
(1)求异面直线BC1与AA1所成的角的大小;
(2)求证:B1D⊥平面A1C1B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设变量x,y满足约束条件$\left\{\begin{array}{l}{y≤x+1}\\{y≥2x-4}\\{x+2y≥2}\end{array}\right.$,则目标函数z=3x-2y的最大值为(  )
A.6B.3C.9D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=sin(ωx+φ),x∈R,其中$ω>0,|φ|<\frac{π}{2}$.若$f(\frac{π}{2})=1,f(-\frac{π}{4})=0$,且f(x)的最小正周期大于2π.
(Ⅰ)求函数f(x)的解析表达式;
(Ⅱ)讨论f(x)在区间$[-\frac{π}{2},\frac{3π}{4}]$内的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数y=f(2x-1)的定义域为[0,1],则y=f(x)的定义域为(  )
A.[0,1]B.[$\frac{1}{2}$,1]C.[-1,1]D.[-1,0]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在锐角△ABC中,内角A,B,C所对的边分别为a,b,c,已知$\sqrt{3}$a=2csinA.
(1)求角C的值;
(2)若c=$\sqrt{7}$,且S△ABC=$\frac{3\sqrt{3}}{2}$,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知:空间四边形ABCD如图所示,E、F分别是AB、AD的中点,G、H分别是BC,CD上的点,且CG=$\frac{1}{3}$BC.CH=$\frac{1}{4}$CD,则直线FH与直线EG(  )
A.平行B.相交C.异面D.垂直

查看答案和解析>>

同步练习册答案