精英家教网 > 高中数学 > 题目详情
3.在平面直角坐标系xOy中,设D={(x,y)|$\left\{\begin{array}{l}{x+y-1≤0}\\{x-y+1≥0}\\{y≥0}\end{array}\right.$},E={(x,y)|x2+y2≤1},若向E中随机投一点,则所投点落在D中的概率是$\frac{1}{π}$.

分析 作出不等式组对应的平面区域,根据几何概型的概率公式求出对应事件的面积即可得到结论.

解答 解:作出对应的图象如图:
则△ABC的面积S=$\frac{1}{2}×2×1=1$,
则对应的概率P=$\frac{{S}_{△ABC}}{{S}_{圆}}$=$\frac{1}{π×{1}^{2}}$=$\frac{1}{π}$,
故答案为:$\frac{1}{π}$.

点评 本题主要考查几何概型的概率计算,根据条件求出对应区域的面积是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.证明函数f(x)=loga$\frac{{a}^{x}+1}{2}$(a>1)在[0,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在等差数列{an}中,
(1)已知d=3,an=20,Sn=65,求n;
(2)已知a11=-1,求S21
(3)已知an=11-3n,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若$\frac{3sinα-cosα}{sinα+3cosα}$=1,求:
(1)tanα的值;
(2)$\frac{sinα+cosα}{sinα-cosα}$+cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=lnx-mx2,g(x)=$\frac{1}{2}$mx2+x(m∈R),令F(x)=f(x)+g(x).
(1)若函数f(x)在(0,1)上单调递增,求实数m的取值范围;
(2)若过原点O可作曲线y=f(x)的两条切线,求实数m的取值范围;
(3)若关于x的不等式F(x)≤mx-1恒成立,求整数m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知f(x)=lnx-ax2-bx.记f(x)的导函数是f′(x).
(Ⅰ)若a=-1,函数f(x)在其定义域内是增函数,求b的取值范围;
(Ⅱ) f(x)的图象与x轴交于A(x1,0),B(x2,0)(x1<x2))两点,AB中点为C(x0,0),求证:f′(x0)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知x∈R,a<lg(|x-3|+|x+7|)恒成立,则a的取值范围是(  )
A.a≥1B.a>1C.a≤1D.a<1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图,在△ABC中,|$\overrightarrow{AB}$|=4,|$\overrightarrow{AC}$|=2,∠BAC=90°,D,E,F分别是边BC,CA,AB上的点且$\overrightarrow{CE}$=$\frac{1}{4}\overrightarrow{CA}$,$\overrightarrow{AF}$=$\frac{1}{4}\overrightarrow{AB}$,$\overrightarrow{BD}$=$\frac{1}{4}\overrightarrow{BC}$,则$\overrightarrow{DE}$•$\overrightarrow{DF}$的值为$\frac{11}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若曲线C上的点到椭圆 $\frac{{x}^{2}}{1{3}^{2}}$+$\frac{{y}^{2}}{1{2}^{2}}$=1的两个焦点的距离的差的绝对值等于8,则曲线C的标准方程为(  )
A.$\frac{{x}^{2}}{1{3}^{2}}$-$\frac{{y}^{2}}{1{2}^{2}}$=1B.$\frac{{x}^{2}}{1{3}^{2}}$-$\frac{{y}^{2}}{{5}^{2}}$=1
C.$\frac{{x}^{2}}{{3}^{2}}$-$\frac{{y}^{2}}{{4}^{2}}$=1D.$\frac{{x}^{2}}{{4}^{2}}$-$\frac{{y}^{2}}{{3}^{2}}$=1

查看答案和解析>>

同步练习册答案