分析 (I)取AB的中点D,连结CD,DF,DE.计算DE,EF,DF,利用勾股定理的逆定理得出DE⊥EF,由三线合一得CD⊥AB,故而CD⊥平面ABB1A1,从而平面ABB1A1⊥平面ABC;
(II)以C为原点建立空间直角坐标系,求出$\overrightarrow{A{C}_{1}}$和平面CEF的法向量$\overrightarrow{n}$,则直线AC1与平面CEF所成角的正弦值等于|cos<$\overrightarrow{n},\overrightarrow{A{C}_{1}}$>|.
解答
证明:(I)取AB的中点D,连结CD,DF,DE.
∵AC=BC,D是AB的中点,∴CD⊥AB.
∵侧面ABB1A1是边长为2的正方形,AE=$\frac{1}{2}$,A1F=$\frac{3}{4}$.
∴A1E=$\frac{3}{2}$,EF=$\sqrt{(\frac{3}{4})^{2}+(\frac{3}{2})^{2}}$=$\frac{3\sqrt{5}}{4}$,DE=$\sqrt{{1}^{2}+(\frac{1}{2})^{2}}$=$\frac{\sqrt{5}}{2}$,
DF=$\sqrt{{2}^{2}+(1-\frac{3}{4})^{2}}$=$\frac{\sqrt{65}}{4}$,
∴EF2+DE2=DF2,∴DE⊥EF,
又CE⊥EF,CE∩DE=E,CE?平面CDE,DE?平面CDE,
∴EF⊥平面CDE,又CD?平面CDE,
∴CD⊥EF,
又CD⊥AB,AB?平面ABB1A1,EF?平面ABB1A1,AB,EF为相交直线,
∴CD⊥平面ABB1A1,又CD?ABC,
∴平面ABB1A1⊥平面ABC.
(II)∵平面ABB1A1⊥平面ABC,
∴三棱柱ABC-A1B1C1是直三棱柱,∴CC1⊥平面ABC.
∵CA⊥CB,AB=2,∴AC=BC=$\sqrt{2}$.
以C为原点,以CA,CB,CC1为坐标轴建立空间直角坐标系,如图所示:
则A($\sqrt{2}$,0,0),C(0,0,0),C1(0,0,2),E($\sqrt{2}$,0,$\frac{1}{2}$),F($\frac{5\sqrt{2}}{8}$,$\frac{3\sqrt{2}}{8}$,2).
∴$\overrightarrow{A{C}_{1}}$=(-$\sqrt{2}$,0,2),$\overrightarrow{CE}$=($\sqrt{2}$,0,$\frac{1}{2}$),$\overrightarrow{CF}$=($\frac{5\sqrt{2}}{8}$,$\frac{3\sqrt{2}}{8}$,2).
设平面CEF的法向量为$\overrightarrow{n}$=(x,y,z),则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{CE}=0}\\{\overrightarrow{n}•\overrightarrow{CF}=0}\end{array}\right.$,
∴$\left\{\begin{array}{l}{\sqrt{2}x+\frac{1}{2}z=0}\\{\frac{5\sqrt{2}}{8}x+\frac{3\sqrt{2}}{8}y+2z=0}\end{array}\right.$,令z=4,得$\overrightarrow{n}$=(-$\sqrt{2}$,-9$\sqrt{2}$,4).
∴$\overrightarrow{A{C}_{1}}•\overrightarrow{n}$=10,|$\overrightarrow{n}$|=6$\sqrt{5}$,|$\overrightarrow{A{C}_{1}}$|=$\sqrt{6}$.
∴sin<$\overrightarrow{n},\overrightarrow{A{C}_{1}}$>=$\frac{\overrightarrow{n}•\overrightarrow{A{C}_{1}}}{|\overrightarrow{n}||\overrightarrow{A{C}_{1}}|}$=$\frac{\sqrt{30}}{18}$.
∴直线AC1与平面CEF所成角的正弦值为$\frac{\sqrt{30}}{18}$.
点评 本题考查了面面垂直的判定,线面角的计算,空间向量的应用,属于中档题.
科目:高中数学 来源: 题型:解答题
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
| A户型 | 0.7 | 1.3 | 1.1 | 1.4 | 1.1 | 0.9 | 0.8 | 0.8 | 1.3 | 0.9 |
| B户型 | 1.2 | 1.6 | 2.3 | 1.8 | 1.4 | 2.1 | 1.4 | 1.2 | 1.7 | 1.3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -4≤k≤1 | B. | -1≤k≤4 | C. | 1≤k≤4 | D. | k≥1或k≤-4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{11}$ | B. | $\frac{4}{11}$ | C. | $\frac{6}{11}$ | D. | $\frac{8}{11}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com