精英家教网 > 高中数学 > 题目详情
10.在三棱柱ABC-A1B1C1中,CA=CB,侧面ABB1A1是边长为2的正方形,点E,F分别在线段AA1、A1B1上,且AE=$\frac{1}{2}$,A1F=$\frac{3}{4}$,CE⊥EF.
(Ⅰ)证明:平面ABB1A1⊥平面ABC;
(Ⅱ)若CA⊥CB,求直线AC1与平面CEF所成角的正弦值.

分析 (I)取AB的中点D,连结CD,DF,DE.计算DE,EF,DF,利用勾股定理的逆定理得出DE⊥EF,由三线合一得CD⊥AB,故而CD⊥平面ABB1A1,从而平面ABB1A1⊥平面ABC;
(II)以C为原点建立空间直角坐标系,求出$\overrightarrow{A{C}_{1}}$和平面CEF的法向量$\overrightarrow{n}$,则直线AC1与平面CEF所成角的正弦值等于|cos<$\overrightarrow{n},\overrightarrow{A{C}_{1}}$>|.

解答 证明:(I)取AB的中点D,连结CD,DF,DE.
∵AC=BC,D是AB的中点,∴CD⊥AB.
∵侧面ABB1A1是边长为2的正方形,AE=$\frac{1}{2}$,A1F=$\frac{3}{4}$.
∴A1E=$\frac{3}{2}$,EF=$\sqrt{(\frac{3}{4})^{2}+(\frac{3}{2})^{2}}$=$\frac{3\sqrt{5}}{4}$,DE=$\sqrt{{1}^{2}+(\frac{1}{2})^{2}}$=$\frac{\sqrt{5}}{2}$,
DF=$\sqrt{{2}^{2}+(1-\frac{3}{4})^{2}}$=$\frac{\sqrt{65}}{4}$,
∴EF2+DE2=DF2,∴DE⊥EF,
又CE⊥EF,CE∩DE=E,CE?平面CDE,DE?平面CDE,
∴EF⊥平面CDE,又CD?平面CDE,
∴CD⊥EF,
又CD⊥AB,AB?平面ABB1A1,EF?平面ABB1A1,AB,EF为相交直线,
∴CD⊥平面ABB1A1,又CD?ABC,
∴平面ABB1A1⊥平面ABC.
(II)∵平面ABB1A1⊥平面ABC,
∴三棱柱ABC-A1B1C1是直三棱柱,∴CC1⊥平面ABC.
∵CA⊥CB,AB=2,∴AC=BC=$\sqrt{2}$.
以C为原点,以CA,CB,CC1为坐标轴建立空间直角坐标系,如图所示:
则A($\sqrt{2}$,0,0),C(0,0,0),C1(0,0,2),E($\sqrt{2}$,0,$\frac{1}{2}$),F($\frac{5\sqrt{2}}{8}$,$\frac{3\sqrt{2}}{8}$,2).
∴$\overrightarrow{A{C}_{1}}$=(-$\sqrt{2}$,0,2),$\overrightarrow{CE}$=($\sqrt{2}$,0,$\frac{1}{2}$),$\overrightarrow{CF}$=($\frac{5\sqrt{2}}{8}$,$\frac{3\sqrt{2}}{8}$,2).
设平面CEF的法向量为$\overrightarrow{n}$=(x,y,z),则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{CE}=0}\\{\overrightarrow{n}•\overrightarrow{CF}=0}\end{array}\right.$,
∴$\left\{\begin{array}{l}{\sqrt{2}x+\frac{1}{2}z=0}\\{\frac{5\sqrt{2}}{8}x+\frac{3\sqrt{2}}{8}y+2z=0}\end{array}\right.$,令z=4,得$\overrightarrow{n}$=(-$\sqrt{2}$,-9$\sqrt{2}$,4).
∴$\overrightarrow{A{C}_{1}}•\overrightarrow{n}$=10,|$\overrightarrow{n}$|=6$\sqrt{5}$,|$\overrightarrow{A{C}_{1}}$|=$\sqrt{6}$.
∴sin<$\overrightarrow{n},\overrightarrow{A{C}_{1}}$>=$\frac{\overrightarrow{n}•\overrightarrow{A{C}_{1}}}{|\overrightarrow{n}||\overrightarrow{A{C}_{1}}|}$=$\frac{\sqrt{30}}{18}$.
∴直线AC1与平面CEF所成角的正弦值为$\frac{\sqrt{30}}{18}$.

点评 本题考查了面面垂直的判定,线面角的计算,空间向量的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.某房地产公司的新建小区有A,B两种户型住宅,其中A户型住宅的每套面积为100平方米,B户型住宅的每套面积为80平方米.该公司准备从两种户型中各拿出10套试销售,如表是这20套住宅每平方米的销售价格(单位:万元/平方米).
12345678910
A户型0.71.31.11.41.10.90.80.81.30.9
B户型1.21.62.31.81.42.11.41.21.71.3
(Ⅰ)根据如表数据,完成下列茎叶图,并分别求出 A,B两类户型住宅每平方米销售价格的中位数;
(Ⅱ)若该公司决定:通过抽签方式进行试销售,抽签活动按A、B户型分成两组,购房者从中任选一组参与抽签(只有一次机会),并根据抽签结果和自己的购买力决定是否购买(仅当抽签结果超过购买力时,放弃购买).现有某居民获得优先抽签权,且他的购买力最多为120万元,为了使其购房成功概率更大,请你向其推荐应当参加哪个户型的抽签活动,并为他估计此次购房的平均单价(单位:万元/平方米).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知A(2,-3),B(-2,-2),直线l:kx-y-k+1=0与线段AB相交,则实数k的取值范围为(  )
A.-4≤k≤1B.-1≤k≤4C.1≤k≤4D.k≥1或k≤-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求z=x-y的最大值、最小值,使x、y满足条件$\left\{\begin{array}{l}{x+y≤2}\\{x≥0}\\{y≥0}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.某三棱锥的三视图如图所示,则该三棱锥的最长棱的长为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列命题中真命题的个数是(  )
①?x∈R,x4>x2
②若p∧q是假命题,则p,q都是假命题;
③sinx=cosy⇒x+y=$\frac{π}{2}$.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在正方体ABCD-A1B1C1D1中,任取两条棱,则这两条棱为异面直线的概率为(  )
A.$\frac{2}{11}$B.$\frac{4}{11}$C.$\frac{6}{11}$D.$\frac{8}{11}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在等差数列{an}中,若a2=3,a5=9,则公差d=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知数列{an}为等比数列,且a7=1,a9=4,则a8=±2.

查看答案和解析>>

同步练习册答案