精英家教网 > 高中数学 > 题目详情
15.下列命题中真命题的个数是(  )
①?x∈R,x4>x2
②若p∧q是假命题,则p,q都是假命题;
③sinx=cosy⇒x+y=$\frac{π}{2}$.
A.0B.1C.2D.3

分析 ①利用特殊值法进行排除判断,
②根据复合命题真假关系进行判断,
③根据三角函数的诱导公式进行化简判断.

解答 解:①当x=1时,x4=x2;即?x∈R,x4>x2为假命题.
②若p∧q是假命题,则p,q至少有一个为假命题,则②为假命题;
③sinx=cosy,则sinx=sin($\frac{π}{2}$-y),
即x=$\frac{π}{2}$-y+2kπ或π-x=$\frac{π}{2}$-y+2kπ,
则x+y=$\frac{π}{2}$错误.
故中真命题的个数是0个,
故选:A

点评 本题主要考查命题的真假判断,涉及的知识点较多,但难度不大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.在正项数列{an}、{bn}中,a1=2,b1=4,且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列.
(1)证明:{${\sqrt{b_n}}$}成等差数列,并求出an,bn
(2)设cn=$\frac{1}{{{b_n}-1}}$,求数列{cn}的前n和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.若数列{an}满足前n项和Sn=2an-4(n∈N*),数列{bn}满足bn+1=an+2bn,且b1=2.
(1)求数列{an}的通项公式;
(2)求数列{bn}前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)=alnx+x2-8x+c.
(1)若a>0,求f(x)的单调区间;
(2)若a=6,对任意k∈[-1,1],函数y=kx(x∈(0,6])的图象总在函数y=f(x)图象的上方,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在三棱柱ABC-A1B1C1中,CA=CB,侧面ABB1A1是边长为2的正方形,点E,F分别在线段AA1、A1B1上,且AE=$\frac{1}{2}$,A1F=$\frac{3}{4}$,CE⊥EF.
(Ⅰ)证明:平面ABB1A1⊥平面ABC;
(Ⅱ)若CA⊥CB,求直线AC1与平面CEF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.将长为l的铁丝剪成两段,分别围成长与宽之比为2:1及3:2的矩形,那么面积的和的最小值为$\frac{3}{104}{l^2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设z=$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i(i是虚数单位),求z+2z2+3z3+4z4+5z5+6z6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ax2-2ax+b(a>0)在区间[-1,3]上的最大值为5,最小值为1.
(1)求a,b的值及f(x)的解析式;
(2)设g(x)=$\frac{f(x)}{x}$,若不等式g(3x)-t•3x≥0在x∈[0,2]上有解,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.若实数x,y满足不等式组$\left\{\begin{array}{l}{x+3y-3≥0}\\{2x-y-3≤0}\\{x-y+1≥0}\\{\;}\end{array}\right.$.
(Ⅰ)求目标函数z=x+y的最大值;
(Ⅱ)求目标函数z=x2+y2的最大值.

查看答案和解析>>

同步练习册答案