分析 根据题意令x=n-1,y=1(n≥2)代入式子得,f(n)=(n-1)f(1)+f(n-1)+2(n-1),化简得f(n)-f(n-1)=3(n-1),利用累加法求出f(n).
解答 解:由题意得,f(1)=1,
令x=n-1,y=1(n≥2)代入f(x+y)=xf(y)+yf(x)+2xy,
f(n)=(n-1)f(1)+f(n-1)+2(n-1),
则f(n)-f(n-1)=3(n-1),
所以f(2)-f(1)=3×1,
f(3)-f(2)=3×2,
f(4)-f(3)=3×3,
…
f(n)-f(n-1)=3(n-1),
以上(n-1)个式子相加得:
f(n)-f(1)=3[1+2+3+…+(n-1)]=3×$\frac{(n-1)n}{2}$,
化简得,f(n)=$\frac{1}{2}$(3n2-3n+2),
故答案为:$\frac{3{n}^{2}-3n+2}{2}$.
点评 本题考查了抽象函数及其应用,主要根根据条件和结论,给变量适当的值代入式子化简,即赋值法,还考查了累加法的应用.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{6}{5}$ | B. | $\frac{2\sqrt{10}}{5}$ | C. | $\frac{4\sqrt{2}}{5}$ | D. | $\frac{4\sqrt{3}}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | 2 | C. | -$\frac{1}{2}$ | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | A∪B=R | B. | A∪(∁RB)=R | C. | A∩(∁RB)=R | D. | (∁RA)∪B=R |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com