精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)满足f(1)=1,且对任何x,y∈R+,均有f(x+y)=xf(y)+yf(x)+2xy,则f(n)=$\frac{3{n}^{2}-3n+2}{2}$.

分析 根据题意令x=n-1,y=1(n≥2)代入式子得,f(n)=(n-1)f(1)+f(n-1)+2(n-1),化简得f(n)-f(n-1)=3(n-1),利用累加法求出f(n).

解答 解:由题意得,f(1)=1,
令x=n-1,y=1(n≥2)代入f(x+y)=xf(y)+yf(x)+2xy,
f(n)=(n-1)f(1)+f(n-1)+2(n-1),
则f(n)-f(n-1)=3(n-1),
所以f(2)-f(1)=3×1,
f(3)-f(2)=3×2,
f(4)-f(3)=3×3,

f(n)-f(n-1)=3(n-1),
以上(n-1)个式子相加得:
f(n)-f(1)=3[1+2+3+…+(n-1)]=3×$\frac{(n-1)n}{2}$,
化简得,f(n)=$\frac{1}{2}$(3n2-3n+2),
故答案为:$\frac{3{n}^{2}-3n+2}{2}$.

点评 本题考查了抽象函数及其应用,主要根根据条件和结论,给变量适当的值代入式子化简,即赋值法,还考查了累加法的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),以双曲线C的一个顶点为圆心,a为半径的圆被双曲线C截得劣弧长为$\frac{2π}{3}$a,则双曲线C的离心率为(  )
A.$\frac{6}{5}$B.$\frac{2\sqrt{10}}{5}$C.$\frac{4\sqrt{2}}{5}$D.$\frac{4\sqrt{3}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.过点(0,1)且与双曲线x2-y2=1只有一个公共点的直线有4条.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知$\overrightarrow a$=(cosx,sinx),$\overrightarrow b$=(sinx+$\sqrt{2}$,cosx+$\sqrt{2})$,设f(x)=$\overrightarrow a•\overrightarrow b$.
(Ⅰ)求函数f(x)的最大值;
(Ⅱ)已知m∈R,p:?x∈R使不等式f(x)≥m2+2m成立;q:函数y=lg(x2+2mx+1)的定义域为R.若“p或q”为真,“p且q”为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.有下列命题:
①若xy=0,则|x|+|y|=0;
②若a>b,则a+c>b+c;
③矩形的对角线互相垂直,
其中真命题共有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在下列区间中,函数f(x)=lnx+x-3的零点所在的区间为(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若2sinα+cosα=-$\sqrt{5}$,则tanα=(  )
A.$\frac{1}{2}$B.2C.-$\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知全集U=R,A={x|x2<16},B={x|y=log3(x-4)},则下列关系正确的是(  )
A.A∪B=RB.A∪(∁RB)=RC.A∩(∁RB)=RD.(∁RA)∪B=R

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\left\{{\begin{array}{l}{|{lg|x|}|,x≠0}\\{1,x=0}\end{array}}$,若关于x的方程f2(x)+af(x)+b=0有9个不同的实数根.   
(1)求a+b的值;    
(2)求a的取值范围.

查看答案和解析>>

同步练习册答案