精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=$\left\{{\begin{array}{l}{|{lg|x|}|,x≠0}\\{1,x=0}\end{array}}$,若关于x的方程f2(x)+af(x)+b=0有9个不同的实数根.   
(1)求a+b的值;    
(2)求a的取值范围.

分析 (1)令f(x)=t,根据f(x)的函数图象判断f(x)=t的解的个数,得出t=1为方程t2+at+b=0的解.
(2)当f(x)=t,t>0且t≠1时,关于x的方程f2(x)+af(x)+b=0有9个不同实数解,据此即可求得实数a的取值范围.

解答 解:(1)做出f(x)的函数图象如图所示:
设f(x)=t,则当t=1时,f(x)=t有5个解,当t≠1时,f(x)=t有4个解.
∵关于x的方程f2(x)+af(x)+b=0有9个不同的实数解,
∴关于t的方程t2+at+b=0有两解,且t=1是其中一解,
∴1+a+b=0,即a+b=-1.
(2)当f(x)=t,t>0且t≠1时,关于x的方程f2(x)+af(x)+b=0有9个不同实数解,
∴t2+at-1-a=0,
∴a=-1-t,∵t>0且t≠1,
∴a∈(-∞,-2)∪(-2,-1)

点评 本题考查了方程的根与函数图象的关系,数形结合是数学解题中常用的思想方法,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)满足f(1)=1,且对任何x,y∈R+,均有f(x+y)=xf(y)+yf(x)+2xy,则f(n)=$\frac{3{n}^{2}-3n+2}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合A={1,2,3},B={-2,-1,0,1,2},则A∩B=(  )
A.{1,2,3}B.{-2,-1,0,1,2}C.{1,2}D.{-2,-1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图所示,一个空间几何体的正视图和左视图都是边长为2的正方形,俯视图是一个直径为2的圆,那么这个几何体的体积为(  )
A.B.C.$\frac{4π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足2acosB=2c-b.
(1)求角A的大小;
(2)若c=2b,求角B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数$f(x)=\frac{2}{x}$的单调递减区间为(  )
A.(-∞,+∞)B.(-∞,0)∪(0,+∞)C.(-∞,0),(0,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=$\frac{{{x^2}+2x+a}}{x}$,x∈1,+∞).
(1)当a=$\frac{1}{2}$时,判断函数单调性并证明;
(2)当a=$\frac{1}{2}$时,求函数f(x)的最小值;
(3)若对任意x∈1,+∞),f(x)>0恒成立,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知不等式ax2+bx-1>0的解集为{x|3<x<4},则实数a=-$\frac{1}{12}$;函数y=x2-bx-a的所有零点之和等于$\frac{7}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某种证件的获取规则是:参加科目A和科目B的考试,每个科目考试的成绩分为合格与不合格,每个科目最多只有2次考试机会,且参加科目A考试的成绩为合格后,才能参加科目B的考试;参加某科目考试的成绩为合格后,不再参加该科目的考试,参加两个科目考试的成绩均为合格才能获得该证件.现有一人想获取该证件,已知此人每次参加科目A考试的成绩为合格的概率是$\frac{2}{3}$,每次参加科目B考试的成绩为合格的概率是$\frac{1}{2}$,且各次考试的成绩为合格与不合格均互不影响.假设此人不放弃按规则所给的所有考试机会,记他参加考试的次数为X.
(Ⅰ)求X的所有可能取的值;
(Ⅱ)求X的分布列和数学期望.

查看答案和解析>>

同步练习册答案