精英家教网 > 高中数学 > 题目详情
17.已知f(x)=$\frac{{{x^2}+2x+a}}{x}$,x∈1,+∞).
(1)当a=$\frac{1}{2}$时,判断函数单调性并证明;
(2)当a=$\frac{1}{2}$时,求函数f(x)的最小值;
(3)若对任意x∈1,+∞),f(x)>0恒成立,试求实数a的取值范围.

分析 (1)当a=$\frac{1}{2}$时,f(x)=x+$\frac{1}{2x}$+2,直接利用函数的单调性定义证明即可;
(2)直接利用(1)证明的函数单调性可知最小值为f(1);
(3)在区间[1,+∞)上,f(x)=$\frac{{x}^{2}+2x+a}{x}$>0恒成立,则$\left\{\begin{array}{l}{{x}^{2}+2x+a>0}\\{x≥1}\end{array}\right.$⇒$\left\{\begin{array}{l}{a>-{x}^{2}+2x}\\{x≥1}\end{array}\right.$;等价于a大于函数φ(x)=-(x2+2x)在[1,+∞)上的最大值.

解答 解 (1)当a=$\frac{1}{2}$时,f(x)=x+$\frac{1}{2x}$+2,
任取1≤x1<x2,则
f(x1)-f(x2)=(x1-x2)+$(\frac{1}{2{x}_{1}}-\frac{1}{2{x}_{2}})$,
∵1≤x1<x2,∴x1x2>1,∴2x1x2-1>0.
又x1-x2<0,∴f(x1)<f(x2),
∴f(x)在[1,+∞)上是增函数,
(2)由f(x)的单调性可知在[1,+∞)上的最小值为f(1)=$\frac{7}{2}$;
(3)在区间[1,+∞)上,f(x)=$\frac{{x}^{2}+2x+a}{x}$>0恒成立,
则$\left\{\begin{array}{l}{{x}^{2}+2x+a>0}\\{x≥1}\end{array}\right.$⇒$\left\{\begin{array}{l}{a>-{x}^{2}+2x}\\{x≥1}\end{array}\right.$;
等价于a大于函数φ(x)=-(x2+2x)在[1,+∞)上的最大值.
只需求函数φ(x)=-(x2+2x)在[1,+∞)上的最大值.
φ(x)=-(x+1)2+1在[1,+∞)上递减,
∴当x=1时,φ(x)最大值为φ(1)=-3.
∴a>-3,故实数a的取值范围是(-3,+∞)

点评 本题主要考查了函数单调性定义证明,函数的最值以及恒成立问题,属中等题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.若2sinα+cosα=-$\sqrt{5}$,则tanα=(  )
A.$\frac{1}{2}$B.2C.-$\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设f(x),g(x)是定义在同一区间[a,b]上的两个函数,若?x∈[a,b]都有|f(x)-g(x)|≤1成立,则称f(x),g(x)在[a,b]上是“亲密函数”,区间[a,b]称为“亲密区间”.若f(x)=x2+3x+2,g(x)=2x+1在[a,b]上是“亲密函数”,则其“亲密区间”是(  )
A.[0,2]B.[0,1]C.[1,2]D.[-1,0]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\left\{{\begin{array}{l}{|{lg|x|}|,x≠0}\\{1,x=0}\end{array}}$,若关于x的方程f2(x)+af(x)+b=0有9个不同的实数根.   
(1)求a+b的值;    
(2)求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知椭圆$\frac{x^2}{4}+{y^2}=1$,A,B是椭圆的左,右顶点,P是椭圆上不与A,B重合的一点,PA、PB的倾斜角分别为α、β,则$\frac{cos(α-β)}{cos(α+β)}$=$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在条件$\left\{\begin{array}{l}{2x-y-6≤0}\\{x-y+2≥0}\\{x≥0}\\{y≥0}\end{array}\right.$,下,目标函数z=ax+by(a>0,b>0)的最大值为40,则$\frac{5}{a}+\frac{1}{b}$的最小值是$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=x2+ax+b(a,b∈R)的图象与x轴相切,若直线y=c与y=c+5依次交f(x)的图象于A,B,C,D四点,且四边形ABCD的面积为25,则正实数c的值为(  )
A.4B.6C.2D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在四棱锥P-ABCD中,PA⊥面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD中点.

(1)证明:CD⊥平面PAE;
(2)若直线PB与平面ABCD所成角为45°,求二面角A-PD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.学校要了解学生对预防流行性感冒知识的了解情况,印制了若干份有10道题的问卷(每题1分)到各班做问卷调查.高一A、B两个班各被随机抽取5名学生进行问卷调查,A班5名学生得分(单位:分)为:4,8,9,9,10;B班5名学生得分(单位:分)为:6,7,8,9,10.
(1)请你估计A、B两个班中哪个班的问卷得分要稳定一些;
(Ⅱ)如果把B班5名学生的得分看成一个总体,并用简单随机抽样方法从中抽取样本容量为2的样本,求样本平均数与总体平均数之差的绝对值小于1的概率.

查看答案和解析>>

同步练习册答案