精英家教网 > 高中数学 > 题目详情
2.在长方体ABCD-A1B1C1D1的八个顶点任两点连线中,随机取一直线,则该直线与平面AB1D1平行的概率为(  )
A.$\frac{3}{14}$B.$\frac{5}{14}$C.$\frac{3}{28}$D.$\frac{5}{28}$

分析 画出长方体,计算8个顶点对应的直线,然后依据线面平行的判定找出满足条件的直线.

解答 解:如图

八个顶点任两点连线共有${C}_{8}^{2}$=28条,其中直线与平面AB1D1平行的有BD,BC',DC'共有3条,
所以该直线与平面AB1D1平行的概率为$\frac{3}{28}$;
故选C.

点评 本题考查了长方体分性质以及线面平行的判断,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.某新产品成本价P元,由于不断进行技术革新,每年成本降低5%,则x年后该产品的成本价为P•0.95x元.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某个兴趣小组有学生10人,其中有4人是三好学生,现已把这10人分成两组进行竞赛辅导,第一小组5人,其中三好学生2人.
(1)如果要从这10人中选一名同学作为该兴趣小组的组长,那么这个同学恰好在第一小组内的概率是多少?
(2)现在要在这10人中任选一名三好学生当组长,则这名同学在第一小组的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,四棱锥P-ABCD中,ABCD为矩形,∠APD=90°,面PAD⊥面ABCD,E、F分别为PC和BD的中点.
(1)证明:EF∥面PAD;
(2)证明:面PDC⊥面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知抛物线C1的顶点是双曲线C2:x2-4ky2=4的中心,而焦点是双曲线的左顶点,
(1)当k=1时,求抛物线C1的方程;
(2)若双曲线的离心率e=$\frac{{\sqrt{6}}}{2}$,求双曲线的渐近线方程和准线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若直线y=kx-2与抛物线y2=8x交于A、B两点,若线段AB的中点的横坐标是2,则弦AB的长为2$\sqrt{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.是否存在同时满足下列两条件的直线l:
(1)l与抛物线y2=8x有两个不同的交点A和B;
(2)线段AB被直线l1:x+5y-5=0垂直平分.若不存在,说明理由,若存在,求出直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知A、B两监测点间距离为3400米,且两点到同一爆炸声的时间差为6s,且B处的声强是A处声强的4倍,声强与距离的平方成反比,求爆炸点P到两监测点中点Q的距离(精确到1m,声速为340m/s).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.己知f(x)=ex-alnx-a,其中常数a>0.
(1)当a=e时,求函数f(x)的极值;
(2)若函数y=f(x)有两个零点x1,x2(0<x1<x2),求证:$\frac{1}{a}<{x_1}<1<{x_2}$<a;
(3)求证:e2x-2-ex-1lnx-x≥0.

查看答案和解析>>

同步练习册答案