精英家教网 > 高中数学 > 题目详情
17.已知抛物线C1的顶点是双曲线C2:x2-4ky2=4的中心,而焦点是双曲线的左顶点,
(1)当k=1时,求抛物线C1的方程;
(2)若双曲线的离心率e=$\frac{{\sqrt{6}}}{2}$,求双曲线的渐近线方程和准线的方程.

分析 (1)把双曲线的方程化为标准方程可得左顶点,即可得到抛物线的基焦点及其p,即可得出抛物线的方程;
(2)由${a^2}=4,{b^2}=\frac{1}{k}$,${c^2}=4+\frac{1}{k}$,利用离心率计算公式可得k,即可得出双曲线的标准方程、渐近线方程与准线方程.

解答 解 (1)k=1,
可得:${C_2}:\frac{x^2}{4}-{y^2}=1$,
∴a=2,
∴F1(-2,0)
设抛物线C1的方程为y2=-2px(p>0),
则$\frac{p}{2}=2$,∴p=4,
∴y2=-8x.
(2)由${a^2}=4,{b^2}=\frac{1}{k}$,
∴${c^2}=4+\frac{1}{k}$,
∴$\frac{c^2}{a^2}=\frac{3}{2}$,
∴$\frac{{4+\frac{1}{k}}}{4}=\frac{3}{2}$,
解得$k=\frac{1}{2}$,
∴${C_2}:\frac{x^2}{4}-\frac{y^2}{2}=1$.
∴渐近线方程为$y=±\frac{{\sqrt{2}}}{2}x$,
准线方程为$x=±\frac{{2\sqrt{6}}}{3}$.

点评 本题考查了抛物线与双曲线的标准方程及其性质、离心率渐近线及其准线方程,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$三个非零向量,甲:$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{a}$•$\overrightarrow{c}$,乙:$\overrightarrow{b}$=$\overrightarrow{c}$,则甲是乙的必要不充分条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若一弓形的弧所对的圆心角是$\frac{π}{3}$,弓形的弦长为2cm,则弓形的面积是$\frac{2π}{3}$-$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知F1,F2分别为椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点,M,N分别为其左右顶点,过F2的直线l与椭圆相交于A,B两点.当直线l与x轴垂直时,四边形AMBN的面积等于2,且满足$|\overrightarrow{M{F_2}}|=2\sqrt{3}|\overrightarrow{AB}|+|\overrightarrow{{F_2}N}|$
(Ⅰ)求此椭圆的方程;
(Ⅱ)设不过原点O的直线m与该椭圆交于P,Q两点,满足直线OP、PQ、OQ的斜率依次成等比数列,求△OPQ面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在正三棱柱ABC-A1B1C1中,AB=a,D、E分别是BB1、CC1上的点,满足BC=EC=2BD,则平面ABC与平面ADE所成的二面角的大小为(  )
A.30°B.45°C.60°D.75°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在长方体ABCD-A1B1C1D1的八个顶点任两点连线中,随机取一直线,则该直线与平面AB1D1平行的概率为(  )
A.$\frac{3}{14}$B.$\frac{5}{14}$C.$\frac{3}{28}$D.$\frac{5}{28}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.抛物线y=-x2上到直线4x+3y-8=0的距离取最小值时点的坐标是$(\frac{2}{3},-\frac{4}{9})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,一条直线上有三点A,B,C,点C在点A与点B之间,点P是此直线外一点,设∠APC=α,∠BPC=β.求证:$\frac{sin(α+β)}{PC}=\frac{sinα}{PB}+\frac{sinβ}{PA}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设F1,F2分别是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,P是C的右支上的点,射线PT平分∠F1PF2,过原点O作PT的平行线交PF1于点M,若|MP|=$\frac{1}{3}$|F1F2|,则C的离心率为(  )
A.$\frac{3}{2}$B.3C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

同步练习册答案