精英家教网 > 高中数学 > 题目详情
9.抛物线y=-x2上到直线4x+3y-8=0的距离取最小值时点的坐标是$(\frac{2}{3},-\frac{4}{9})$.

分析 设抛物线上的任意一点为P(x,-x2).则点P到直线的距离d=$\frac{|4x-3{x}^{2}-8|}{\sqrt{{4}^{2}+{3}^{2}}}$=$\frac{|3(x-\frac{2}{3})^{2}+\frac{20}{3}|}{5}$,利用二次函数的单调性即可得出.

解答 解:设抛物线上的任意一点为P(x,-x2).
则点P到直线的距离d=$\frac{|4x-3{x}^{2}-8|}{\sqrt{{4}^{2}+{3}^{2}}}$=$\frac{|3(x-\frac{2}{3})^{2}+\frac{20}{3}|}{5}$≥$\frac{4}{3}$,当x=$\frac{2}{3}$时取等号.
∴$y=-(\frac{2}{3})^{2}=-\frac{4}{9}$.
∴P$(\frac{2}{3},-\frac{4}{9})$.
故答案为:$(\frac{2}{3},-\frac{4}{9})$.

点评 本题考查了抛物线的标准方程及其性质、点到直线的距离公式、二次函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.在△ABC中,角A,B,C所对的边分别为a、b、c,且bcosC+$\sqrt{3}$bsinC-a-c=0
(1)求B;
(2)若|$\overrightarrow{BA}$+$\overrightarrow{BC}$|=2$\sqrt{3}$,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设数列{an}是首项为1,公差为d的等差数列,且a1,a2-1,a3-1是等比数列{bn}的前三项.
(1)求{an}的通项公式;
(2)设cn=an•bn,求{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知抛物线C1的顶点是双曲线C2:x2-4ky2=4的中心,而焦点是双曲线的左顶点,
(1)当k=1时,求抛物线C1的方程;
(2)若双曲线的离心率e=$\frac{{\sqrt{6}}}{2}$,求双曲线的渐近线方程和准线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知点A(3,2),点P是抛物线y2=4x上的一个动点,F为抛物线的焦点,求|PA|+|PF|的最小值及此时P点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.是否存在同时满足下列两条件的直线l:
(1)l与抛物线y2=8x有两个不同的交点A和B;
(2)线段AB被直线l1:x+5y-5=0垂直平分.若不存在,说明理由,若存在,求出直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设抛物线y2=4x上一点P到直线x=-2的距离为5,则点P到该抛物线焦点的距离是4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知数列{an}的各项均为正数,它的前n项和为Sn,满足:Sn=$\frac{1}{6}$(an+1)(an+2),且a2,a4,a9,成等比数列,数列{an}通项公式为an=3n-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图所示,AB为圆O的直径,BC为圆O的切线,连接OC,D为圆O上一点,且AD∥OC.
(1)求证:CO平分∠DCB;
(2)已知AD•OC=8,求圆O的半径.

查看答案和解析>>

同步练习册答案