精英家教网 > 高中数学 > 题目详情
19.如图所示,AB为圆O的直径,BC为圆O的切线,连接OC,D为圆O上一点,且AD∥OC.
(1)求证:CO平分∠DCB;
(2)已知AD•OC=8,求圆O的半径.

分析 (1)首先利用三角形的全等的判定证明△BCD为等腰三角形,从而得出结论.
(2)利用三角形的相似进一步得出线段成比例最后转化出结果.

解答 证明:(1)连接OD,BD,
AB是直径,
所以:AB⊥BD,
OC⊥BD.…(1分)
AD∥OC,
所以:∠BOE=∠DOE
设BD∩OC=E,且OD=OB,OE=OE,
所以:△BOE≌△DOE,
则:BE=DE,BD⊥OC,
所以:CO平分∠DCB.
(2)由于:AO=OD,
所以:∠OAD=∠ODA,
AD∥OC,
所以:∠DOC=∠ODA,
则:∠OAD=∠DOC,…(7分)
所以:Rt△BDA∽Rt△CDO,
所以:AD•OC=AB•OD=2OD2=8
所以所求的圆的半径为2.

点评 本题考查的知识要点:三角形全等和三角形相似的判定和性质的应用,平行线性质的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.抛物线y=-x2上到直线4x+3y-8=0的距离取最小值时点的坐标是$(\frac{2}{3},-\frac{4}{9})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.y=lnx的导数为${y}^{′}=\frac{1}{x}$(x>0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设F1,F2分别是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,P是C的右支上的点,射线PT平分∠F1PF2,过原点O作PT的平行线交PF1于点M,若|MP|=$\frac{1}{3}$|F1F2|,则C的离心率为(  )
A.$\frac{3}{2}$B.3C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设f(x)=ax2+2x+1-lnx,a∈R.
(1)当a=-$\frac{1}{2}$时,f(x)是否存在极值点;若存在,求出该极值点,若不存在,说明理由;
(2)求f(x)有两个极值点的充要条件;
(3)若f(x)为单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,三棱柱ABC-A1B1C1中,A1A⊥平面ABC,AC=BC,AB=2A1A=4.以AB,BC为邻边作平行四边形ABCD,连接A1D和DC1
(Ⅰ)求证:A1D∥平面BCC1B1
(Ⅱ)若二面角A1-DC-A为45°,
①证明:平面A1C1D⊥平面A1AD;
②求直线A1A与平面A1C1D所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设f(x)=$\left\{\begin{array}{l}{1-|x-1|,x<2}\\{\frac{1}{2}f(x-2),x≥2}\end{array}\right.$,其图象与函数g(x)=$\frac{1}{x}$的图象交点的个数是6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知数列{an}是等比数列,且a3+a7=20,a1•a9=64,则an=${2}^{\frac{n+1}{2}}$或(-1)n-3${2}^{\frac{n+1}{2}}$或${2}^{\frac{11-n}{2}}$或(-1)n-3${2}^{\frac{11-n}{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.解不等式:$\frac{2x+1}{x-1}$≤1.

查看答案和解析>>

同步练习册答案