| A. | $\frac{3}{2}$ | B. | 3 | C. | $\sqrt{2}$ | D. | $\sqrt{3}$ |
分析 运用极限法,设双曲线的右顶点为A,考察特殊情形,当点P→A时,射线PT→直线x=a,此时PM→AO,即|PM|→a,结合离心率公式即可计算得到.
解答 解:设双曲线的右顶点为A,
考察特殊情形,当点P→A时,射线PT→直线x=a,
此时PM→AO,即|PM|→a,
特别地,当P与A重合时,|PM|=a.
由|MP|=$\frac{1}{3}$|F1F2|=$\frac{2c}{3}$,
即有a=$\frac{2c}{3}$,
由离心率公式e=$\frac{c}{a}$=$\frac{3}{2}$.
故选:A.
点评 本题考查双曲线的定义、方程和性质,主要考查离心率的求法,注意极限法的运用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com