精英家教网 > 高中数学 > 题目详情
16.在凸多边形当中显然有F+V-E=1(其中F:面数,V:顶点数,E:边数)类比到空间凸多面体中有相应的结论为;F+V-E=2.

分析 根据类比推理的方法,由平面凸多边形中的面数、顶点数和边数的关系,类比到空间凸多面体中有相应的结论,并加以验证成立即可.

解答 解:根据凸多边形当中有:F+V-E=1,
其中F:面数,V:顶点数,E:边数;
类比到空间凸多面体中有相应的结论为;F+V-E=2;
如四面体的顶点数V=4,面数F=4,边数E=6,则V+F-E=4+4-6=2.
故答案为;F+V-E=2.

点评 本题考查了类比推理的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知复数z=a2+(b-2)i的实部和虚部分别是2和3,则实数a,b的值分别是(  )
A.$\sqrt{2}$,1B.$\sqrt{2}$,5C.±$\sqrt{2}$,5D.±$\sqrt{2}$,1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x3+ax2+bx(x≠0)只有一个零点x=3.
(I)求函数f(x)的解析式;
(II)若函数g(x)=f(x)+mlnx在区间[0,2]上有极值点,求m取值范围
(III)是否存在两个不等正数s,t(s<t),当x∈[s,t]时,函数f(x)=x3+ax2+bx的值域也是[s,t],若存在,求出所有这样的正数s,t,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若关于x的不等式4x-2x+1-a≤0在[1,2]上恒成立,则实数a的取值范围为a≥8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{2a}{e}$x-lnx(a∈R,e为自然对数的底数).
(Ⅰ)讨论函数f(x)的极值点;
(Ⅱ)当a=1时,求证:f(x)-$\frac{{x}^{2}}{{e}^{x}}$>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,a、b、c分别是A、B、C的对边,已知2cos$\frac{C}{2}$-sin$\frac{C}{2}$+1=0.
( I)求sinC的值;
( II)若a2+b2=4(a+b)-8,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知A、B是单位圆(O为圆心)上的两个定点,且∠AOB=30°,若C为该圆上的动点,且$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$(x,y∈R),则xy的最大值为2-$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若f(x)=$\frac{x}{{{{log}_{\frac{1}{2}}}(2x-1)}}$,则f(x)的定义域为(  )
A.$(\frac{1}{2},1)$B.$(\frac{1}{2},+∞)$C.$(\frac{1}{2},1)∪(1,+∞)$D.$(\frac{1}{2},2)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列说法错误的是(  )
A.已知a,b,m∈R,命题“若am2<bm2,则a<b”为真命题
B.命题“?x0∈R,x02-x0>0”的否定是“?x∈R,x2-x≤0”
C.命题“p且q”为真命题,则命题p和命题q均为真命题
D.“x>3”是“x>2”的必要不充分条件

查看答案和解析>>

同步练习册答案