精英家教网 > 高中数学 > 题目详情
5.已知复数z=a2+(b-2)i的实部和虚部分别是2和3,则实数a,b的值分别是(  )
A.$\sqrt{2}$,1B.$\sqrt{2}$,5C.±$\sqrt{2}$,5D.±$\sqrt{2}$,1

分析 利用复数的定义,列出方程求解即可.

解答 解:复数z=a2+(b-2)i的实部和虚部分别是2和3,
可得a=±$\sqrt{2}$,b-2=3,b=5.
故选:C.

点评 本题考查复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.如图,已知PA⊥平面ABCD,PA=AB=AD=$\frac{1}{2}$CD=1,∠BAD=∠ADC=90°.
(1)求直线PD与平面PAB所成角的大小;
(2)求点B到平面PCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知直线l经过直线3x+4y-2=0与2x+y+2=0的交点P,且垂直于直线x-3y+1=0
(Ⅰ)求直线l方程;
(Ⅱ)求直线l与两坐标轴围成的三角形的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知1<a<2,2<a+b<4,则5a-b的取值范围是(2,10).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在平面直角坐标系中,动点P(x,y)到两条坐标轴的距离之和等于它到点(1,1)的距离,记点P的轨迹为曲线W,则下列命题中:
①曲线W关于原点对称;            
②曲线W关于x轴对称;
③曲线W关于y轴对称;            
④曲线W关于直线y=x对称
所有真命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设有抛物线C:y=-x2+$\frac{9}{2}$x-4,过原点O作C的切线y=kx,使切点P在第一象限,求切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设F1(-c,0),F2(c,0)分别为椭圆E:$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{4-m}$=1的左、右焦点.
(1)若椭圆的离心率是$\frac{\sqrt{6}}{3}$,求椭圆的方程,并写出m的取值范围;
(2)设P(x0,y0)为椭圆E上一点,且在第一象限内,直线F2P与y轴相交于点Q,若以PQ为直径的圆经过点F1,证明:点P在直线x+y-2=0上.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若函数f(x)=$\left\{\begin{array}{l}{ax+a,x≤0}\\{xlnx,x>0}\end{array}\right.$ 的图象上有且仅有两对点关于原点对称,则a的取值范围是(  )
A.(0,$\frac{1}{e}$)B.(0,$\frac{1}{e}$)∪(1,e)C.(1,+∞)D.(0,1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在凸多边形当中显然有F+V-E=1(其中F:面数,V:顶点数,E:边数)类比到空间凸多面体中有相应的结论为;F+V-E=2.

查看答案和解析>>

同步练习册答案